Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2013_47_2_a6, author = {V. Yu. Protasov}, title = {Asymptotics of {Products} of {Nonnegative} {Random} {Matrices}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {68--79}, publisher = {mathdoc}, volume = {47}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a6/} }
V. Yu. Protasov. Asymptotics of Products of Nonnegative Random Matrices. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 68-79. http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a6/
[1] H. Furstenberg, H. Kesten, “Products of random matrices”, Ann. Math. Statist., 31 (1960), 457–469 | DOI | MR | Zbl
[2] V. I. Oseledets, “Multiplikativnaya ergodicheskaya teorema. Kharakteristicheskie pokazateli Lyapunova dinamicheskikh sistem”, Trudy MMO, 19, Izd-vo Mosk. un-ta, M., 1968, 179–210
[3] V. N. Tutubalin, “O predelnykh teoremakh dlya proizvedeniya sluchainykh matrits”, TVP, 10:1 (1965), 19–32 | MR | Zbl
[4] E. Le Page, “Théorème limites pour les produits de matrices aléatories”, Lecture Notes in Math., 928, 1982, 258–303 | DOI | MR | Zbl
[5] A. V. Lëtchikov, “Uslovnaya predelnaya teorema dlya proizvedenii sluchainykh matrits”, Matem. sb., 186:3 (1995), 65–84 | MR | Zbl
[6] I. Ya. Goldsheid, G. A. Margulis, “Pokazateli Lyapunova proizvedeniya sluchainykh matrits”, UMN, 44(269):5 (1989), 13–60 | MR
[7] W. C. Watkins, “Limit theorems for products of random matrices: a comparison of two points of view”, Contemp. Math., 50, Amer. Math. Sci., Providence, RI, 1986, 5–29 | DOI | MR
[8] H. Ishitani, “A central limit theorem for the subadditive process and its application to products of random matrices”, Publ. Res. Inst. Math. Sci., 12:3 (1976/77), 565–575 | DOI | MR
[9] E. S. Key, “Lower bounds for the maximal Lyapunov exponent”, J. Theoret. Probab., 3:3 (1990), 477–488 | DOI | MR | Zbl
[10] H. Hennion, “Limit theorems for products of positive random matrices”, Ann. Probab., 25:4 (1997), 1545–1587 | DOI | MR | Zbl
[11] D. Hong, Lyapunov exponents: when the top joins the bottom, Technical Report RR-4198, INRIA, 2001 http://hal.inria.fr/docs/00/07/24/24/pdf/rr-4198.pdf
[12] J. E. Cohen, “Convexity properties of products of random nonnegative matrices”, Proc. Nati. Acad. Sci. USA, 77:7, part 1 (1980), 3749–3752 | DOI | MR | Zbl
[13] R. Jungers, V. Yu. Protasov, V. Blondel, “Overlap-free words and spectra of matrices”, Theor. Comput. Sc., 410:38–40 (2009), 3670–3684 | DOI | MR | Zbl
[14] V. Yu. Protasov, “Invariantnye funktsionaly sluchainykh matrits”, Funkts. analiz i ego pril., 44:3 (2010), 84–88 | DOI | MR | Zbl
[15] V. Yu. Protasov, “Invariantnye funktsii dlya pokazatelei Lyapunova sluchainykh matrits”, Matem. sb., 202:1 (2011), 105–132 | DOI | MR | Zbl
[16] Random Matrices and Their Applications, Contemp. Math., 50, eds. J. E. Cohen, H. Kesten, C. M. Newman, Amer. Math. Soc., Providence, RI, 1986 | MR | Zbl
[17] J. N. Tsitsiklis, V. D. Blondel, “The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate”, Math. Control Signals Systems, 10:1 (1997), 31–40 | DOI | MR | Zbl
[18] L. Gerencser, G. Michaletzky, Z. Orlovits, “Stability of block-triangular stationary random matrices”, Systems Control Lett., 57:8 (2008), 620–625 | DOI | MR | Zbl