KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 55-67
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak{S}_\mathbb{X}$ be the group of all finite permutations on a countable set $\mathbb {X}$, and let $\Pi=({}^1\mathbb{X},\dots,{}^n\mathbb{X})$ be a partition of $\mathbb{X}$ into disjoint subsets such that
$|{}^i\mathbb{X}|=\infty$ for all $i$. We set $\mathfrak{S}_\Pi=\{s\in\mathfrak{S}_\mathbb{X}\mid s({}^i\mathbb{X})={}^i\mathbb{X}$ for all $i\}$. A positive definite function $\varphi$ on
$\mathfrak{S}_\mathbb{X}$ is called a KMS state if the corresponding vector in the space of the GNS representation is cyclic for the commutant of this representation. A complete description of all factor KMS states which are invariant (central) with respect to the subgroup $\mathfrak{S}_\Pi$ is obtained.
Keywords:
KMS state, Young subgroup, factor representation, quasi-equivalent representations.
Mots-clés : indecomposable state
Mots-clés : indecomposable state
@article{FAA_2013_47_2_a5,
author = {N. I. Nessonov},
title = {KMS {States} on $\mathfrak{S}_\infty$ {Invariant} with {Respect} to the {Young} {Subgroups}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {55--67},
publisher = {mathdoc},
volume = {47},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a5/}
}
TY - JOUR
AU - N. I. Nessonov
TI - KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups
JO - Funkcionalʹnyj analiz i ego priloženiâ
PY - 2013
SP - 55
EP - 67
VL - 47
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a5/
LA - ru
ID - FAA_2013_47_2_a5
ER -
N. I. Nessonov. KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 55-67. http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a5/