KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 55-67

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{S}_\mathbb{X}$ be the group of all finite permutations on a countable set $\mathbb {X}$, and let $\Pi=({}^1\mathbb{X},\dots,{}^n\mathbb{X})$ be a partition of $\mathbb{X}$ into disjoint subsets such that $|{}^i\mathbb{X}|=\infty$ for all $i$. We set $\mathfrak{S}_\Pi=\{s\in\mathfrak{S}_\mathbb{X}\mid s({}^i\mathbb{X})={}^i\mathbb{X}$ for all $i\}$. A positive definite function $\varphi$ on $\mathfrak{S}_\mathbb{X}$ is called a KMS state if the corresponding vector in the space of the GNS representation is cyclic for the commutant of this representation. A complete description of all factor KMS states which are invariant (central) with respect to the subgroup $\mathfrak{S}_\Pi$ is obtained.
Keywords: KMS state, Young subgroup, factor representation, quasi-equivalent representations.
Mots-clés : indecomposable state
@article{FAA_2013_47_2_a5,
     author = {N. I. Nessonov},
     title = {KMS {States} on $\mathfrak{S}_\infty$ {Invariant} with {Respect} to the {Young} {Subgroups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {55--67},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a5/}
}
TY  - JOUR
AU  - N. I. Nessonov
TI  - KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 55
EP  - 67
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a5/
LA  - ru
ID  - FAA_2013_47_2_a5
ER  - 
%0 Journal Article
%A N. I. Nessonov
%T KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 55-67
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a5/
%G ru
%F FAA_2013_47_2_a5
N. I. Nessonov. KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 55-67. http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a5/