KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 55-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{S}_\mathbb{X}$ be the group of all finite permutations on a countable set $\mathbb {X}$, and let $\Pi=({}^1\mathbb{X},\dots,{}^n\mathbb{X})$ be a partition of $\mathbb{X}$ into disjoint subsets such that $|{}^i\mathbb{X}|=\infty$ for all $i$. We set $\mathfrak{S}_\Pi=\{s\in\mathfrak{S}_\mathbb{X}\mid s({}^i\mathbb{X})={}^i\mathbb{X}$ for all $i\}$. A positive definite function $\varphi$ on $\mathfrak{S}_\mathbb{X}$ is called a KMS state if the corresponding vector in the space of the GNS representation is cyclic for the commutant of this representation. A complete description of all factor KMS states which are invariant (central) with respect to the subgroup $\mathfrak{S}_\Pi$ is obtained.
Keywords: KMS state, Young subgroup, factor representation, quasi-equivalent representations.
Mots-clés : indecomposable state
@article{FAA_2013_47_2_a5,
     author = {N. I. Nessonov},
     title = {KMS {States} on $\mathfrak{S}_\infty$ {Invariant} with {Respect} to the {Young} {Subgroups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {55--67},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a5/}
}
TY  - JOUR
AU  - N. I. Nessonov
TI  - KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 55
EP  - 67
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a5/
LA  - ru
ID  - FAA_2013_47_2_a5
ER  - 
%0 Journal Article
%A N. I. Nessonov
%T KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 55-67
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a5/
%G ru
%F FAA_2013_47_2_a5
N. I. Nessonov. KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 55-67. http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a5/

[1] F. A. Berezin, Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd-vo MGU, M., 1983 | MR

[2] A. Yu. Okunkov, “Teorema Toma i predstavleniya beskonechnoi bisimmetricheskoi gruppy”, Funkts. analiz i ego pril., 28:2 (1994), 31–40 | MR | Zbl

[3] A. Yu. Okunkov, “O predstavleniyakh beskonechnoi simmetricheskoi gruppy”, Zap. nauchn. sem. POMI, 240 (1997), 166–228 | Zbl

[4] G. I. Olshanskii, “Unitarnye predstavleniya $(G,K)$-par, svyazannykh s beskonechnoi simmetricheskoi gruppoi $S(\infty)$”, Algebra i analiz, 1:4 (1989), 178–209 | MR

[5] V. Ya. Golodets, “Modulyarnye operatory i asimptoticheskaya kommutativnost v algebrakh fon Neimana”, UMN, 33:1(199) (1978), 43–94 | MR | Zbl

[6] S. Stratila, D. Voiculescu, “On a class of KMS states for the unitary group $U(\infty)$”, Math. Ann., 235:1 (1978), 87–110 | DOI | MR

[7] M. Takesaki, Theory of Operator Algebras, v. II, Springer-Verlag, Berlin, 2003 | MR

[8] E. Thoma, “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen symmetrischen Gruppe”, Math. Z., 85:1 (1964), 40–61 | DOI | MR | Zbl

[9] A. M. Vershik, S. V. Kerov, “Asimptoticheskaya teoriya kharakterov simmetricheskoi gruppy”, Funkts. analiz i ego pril., 15:4 (1981), 15–27 | MR

[10] N. I. Nessonov, “KMSh-sostoyaniya na gruppe $GL(\infty)$ i dopustimye predstavleniya $GL(\infty)^X$”, Trudy S.-Peterburgskogo MO, 10 (2004), 109–165 | MR