Affinely Homogeneous Real Hypersurfaces of $\mathbb{C}^2$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 38-54
Voir la notice de l'article provenant de la source Math-Net.Ru
A complete affine classification of germs of affinely homogeneous real hypersurfaces of $\mathbb{C}^2$ is presented.
The two main tools used in the classification are canonical local equations of manifolds and the theory of Lie algebras.
The classification obtained in the paper is shown to be different from the well-known description of holomorphically homogeneous real hypersurfaces of $\mathbb{C}^2$ due to {É.} Cartan (1932).
Keywords:
complex space, homogeneous submanifold, vector field, Lie algebra, Levi form, canonical equation of a hypersurface.
Mots-clés : affine transformation
Mots-clés : affine transformation
@article{FAA_2013_47_2_a4,
author = {A. V. Loboda},
title = {Affinely {Homogeneous} {Real} {Hypersurfaces} of $\mathbb{C}^2$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {38--54},
publisher = {mathdoc},
volume = {47},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a4/}
}
A. V. Loboda. Affinely Homogeneous Real Hypersurfaces of $\mathbb{C}^2$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 38-54. http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a4/