Affinely Homogeneous Real Hypersurfaces of $\mathbb{C}^2$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 38-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete affine classification of germs of affinely homogeneous real hypersurfaces of $\mathbb{C}^2$ is presented. The two main tools used in the classification are canonical local equations of manifolds and the theory of Lie algebras. The classification obtained in the paper is shown to be different from the well-known description of holomorphically homogeneous real hypersurfaces of $\mathbb{C}^2$ due to {É.} Cartan (1932).
Keywords: complex space, homogeneous submanifold, vector field, Lie algebra, Levi form, canonical equation of a hypersurface.
Mots-clés : affine transformation
@article{FAA_2013_47_2_a4,
     author = {A. V. Loboda},
     title = {Affinely {Homogeneous} {Real} {Hypersurfaces} of $\mathbb{C}^2$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {38--54},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a4/}
}
TY  - JOUR
AU  - A. V. Loboda
TI  - Affinely Homogeneous Real Hypersurfaces of $\mathbb{C}^2$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 38
EP  - 54
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a4/
LA  - ru
ID  - FAA_2013_47_2_a4
ER  - 
%0 Journal Article
%A A. V. Loboda
%T Affinely Homogeneous Real Hypersurfaces of $\mathbb{C}^2$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 38-54
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a4/
%G ru
%F FAA_2013_47_2_a4
A. V. Loboda. Affinely Homogeneous Real Hypersurfaces of $\mathbb{C}^2$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 38-54. http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a4/

[1] E. Cartan, “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Math. Pura Appl. (4), 11:1 (1932), 17–90 ; Oeuvres II, 2, 1231–1304 | DOI | MR

[2] A. Loboda, A. Khodarev, “Ob odnom semeistve affinno-odnorodnykh veschestvennykh giperpoverkhnostei $3$-mernogo kompleksnogo prostranstva”, Izv. VUZov. Ser. Matem., 10 (2003), 38–50 | MR | Zbl

[3] G. Fels, W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension $5$”, Acta Math., 201:1 (2008), 1–82 | DOI | MR | Zbl

[4] A. V. Loboda, “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$ s dvumernymi gruppami izotropii”, Trudy MIAN, 235, Nauka, M., 2001, 114–142 | MR

[5] A. V. Loboda, “Ob opredelenii odnorodnoi strogo psevdo-vypukloi giperpoverkhnosti po koeffitsientam ee normalnogo uravneniya”, Matem. zametki, 73:3 (2003), 453–456 | DOI | MR | Zbl

[6] A. M. Demin, A. V. Loboda, “Primer $2$-parametricheskogo semeistva affinno-odnorodnykh veschestvennykh giperpoverkhnostei v $\mathbb{C}^3$”, Matem. zametki, 84:5 (2008), 791–794 | DOI | MR | Zbl

[7] M. S. Danilov, A. V. Loboda, “Ob affinnoi odnorodnosti indefinitnykh veschestvennykh giperpoverkhnostei prostranstva $\mathbb{C}^3$”, Matem. zametki, 88:6 (2010), 867–884 | DOI | MR | Zbl

[8] B. Doubrov, B. Komrakov, M. Rabinovich, “Homogeneous surfaces in the $3$-dimensional affine geometry”, Geometry and Topology of Submanifold, VIII, World Scientific Publ., River Edge, NJ, 1996, 168–178 | MR | Zbl

[9] N. Mozhei, “Odnorodnye podmnogoobraziya v chetyrekhmernoi affinnoi i proektivnoi geometrii”, Izv. VUZov. Matematika, 7 (2000), 41–52 | MR | Zbl

[10] K. Nomizu, T. Sasaki, “A new model of unimodular-affinely homogeneous surfaces”, Manuscr. Math., 73:1 (1991), 39–44 | DOI | MR | Zbl

[11] A. Loboda, “O nekotorykh invariantakh trubchatykh giperpoverkhnostei v $\mathbb{C}^2$”, Matem. zametki, 59:2 (1996), 211–223 | DOI | MR | Zbl

[12] A. Loboda, On homogeneity of embedded manifolds, http://www.mathematik.uni-bielefeld.de/sfb701/files/preprints/sfb10091.pdf

[13] A. Loboda, “Klassifikatsiya affinno-odnorodnykh nevyrozhdennykh po Levi veschestvennykh giperpoverkhnostei prostranstva $\mathbb{C}^2$”, Matematika, vyp. 3, Sovremennye problemy matematiki i mekhaniki, VI, Izd-vo MGU, M., 2011, 56–68

[14] A. Loboda, Odnorodnost vlozhennykh mnogoobrazii. Affinnaya geometriya veschestvennykh giperpoverkhnostei prostranstva $\mathbb{C}^2$, Izd-vo VGASU, Voronezh, 2012

[15] D. Zaitsev, “On different notions of homogeneity for CR-manifolds”, Asian J. Math., 11:2 (2007), 331–340 | DOI | MR | Zbl

[16] R. Bishop, R. Krittenden, Geometriya mnogoobrazii, Mir, M., 1963 | MR

[17] A. P. Shirokov, P. A. Shirokov, Affinnaya differentsialnaya geometriya, Fizmatgiz, M., 1959 | MR | Zbl