Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2013_47_2_a4, author = {A. V. Loboda}, title = {Affinely {Homogeneous} {Real} {Hypersurfaces} of $\mathbb{C}^2$}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {38--54}, publisher = {mathdoc}, volume = {47}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a4/} }
A. V. Loboda. Affinely Homogeneous Real Hypersurfaces of $\mathbb{C}^2$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 38-54. http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a4/
[1] E. Cartan, “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Math. Pura Appl. (4), 11:1 (1932), 17–90 ; Oeuvres II, 2, 1231–1304 | DOI | MR
[2] A. Loboda, A. Khodarev, “Ob odnom semeistve affinno-odnorodnykh veschestvennykh giperpoverkhnostei $3$-mernogo kompleksnogo prostranstva”, Izv. VUZov. Ser. Matem., 10 (2003), 38–50 | MR | Zbl
[3] G. Fels, W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension $5$”, Acta Math., 201:1 (2008), 1–82 | DOI | MR | Zbl
[4] A. V. Loboda, “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$ s dvumernymi gruppami izotropii”, Trudy MIAN, 235, Nauka, M., 2001, 114–142 | MR
[5] A. V. Loboda, “Ob opredelenii odnorodnoi strogo psevdo-vypukloi giperpoverkhnosti po koeffitsientam ee normalnogo uravneniya”, Matem. zametki, 73:3 (2003), 453–456 | DOI | MR | Zbl
[6] A. M. Demin, A. V. Loboda, “Primer $2$-parametricheskogo semeistva affinno-odnorodnykh veschestvennykh giperpoverkhnostei v $\mathbb{C}^3$”, Matem. zametki, 84:5 (2008), 791–794 | DOI | MR | Zbl
[7] M. S. Danilov, A. V. Loboda, “Ob affinnoi odnorodnosti indefinitnykh veschestvennykh giperpoverkhnostei prostranstva $\mathbb{C}^3$”, Matem. zametki, 88:6 (2010), 867–884 | DOI | MR | Zbl
[8] B. Doubrov, B. Komrakov, M. Rabinovich, “Homogeneous surfaces in the $3$-dimensional affine geometry”, Geometry and Topology of Submanifold, VIII, World Scientific Publ., River Edge, NJ, 1996, 168–178 | MR | Zbl
[9] N. Mozhei, “Odnorodnye podmnogoobraziya v chetyrekhmernoi affinnoi i proektivnoi geometrii”, Izv. VUZov. Matematika, 7 (2000), 41–52 | MR | Zbl
[10] K. Nomizu, T. Sasaki, “A new model of unimodular-affinely homogeneous surfaces”, Manuscr. Math., 73:1 (1991), 39–44 | DOI | MR | Zbl
[11] A. Loboda, “O nekotorykh invariantakh trubchatykh giperpoverkhnostei v $\mathbb{C}^2$”, Matem. zametki, 59:2 (1996), 211–223 | DOI | MR | Zbl
[12] A. Loboda, On homogeneity of embedded manifolds, http://www.mathematik.uni-bielefeld.de/sfb701/files/preprints/sfb10091.pdf
[13] A. Loboda, “Klassifikatsiya affinno-odnorodnykh nevyrozhdennykh po Levi veschestvennykh giperpoverkhnostei prostranstva $\mathbb{C}^2$”, Matematika, vyp. 3, Sovremennye problemy matematiki i mekhaniki, VI, Izd-vo MGU, M., 2011, 56–68
[14] A. Loboda, Odnorodnost vlozhennykh mnogoobrazii. Affinnaya geometriya veschestvennykh giperpoverkhnostei prostranstva $\mathbb{C}^2$, Izd-vo VGASU, Voronezh, 2012
[15] D. Zaitsev, “On different notions of homogeneity for CR-manifolds”, Asian J. Math., 11:2 (2007), 331–340 | DOI | MR | Zbl
[16] R. Bishop, R. Krittenden, Geometriya mnogoobrazii, Mir, M., 1963 | MR
[17] A. P. Shirokov, P. A. Shirokov, Affinnaya differentsialnaya geometriya, Fizmatgiz, M., 1959 | MR | Zbl