Commutator Estimates in von Neumann Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 77-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{M}$ be a von Neumann algebra. For every self-adjoint locally measurable operator $a$, there exists a central self-adjoint locally measurable operator $c_0$ such that, given any $\varepsilon>0$, $|[a,u_\varepsilon]|\ge(1-\varepsilon)|a-c_0|$ for some unitary operator $u_\varepsilon\in\mathcal{M}$. In particular, every derivation $\delta\colon\mathcal{M}\to\mathcal{I}$ (where $\mathcal{I}$ is an ideal in $\mathcal{M}$) is inner, and $\delta=\delta_a$ for $a\in\mathcal{I}$.
Keywords: derivation, von Neumann algebra, measurable operator, symmetric operator ideal.
@article{FAA_2013_47_1_a6,
     author = {A. F. Ber and F. A. Sukochev},
     title = {Commutator {Estimates} in von {Neumann} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {77--79},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a6/}
}
TY  - JOUR
AU  - A. F. Ber
AU  - F. A. Sukochev
TI  - Commutator Estimates in von Neumann Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 77
EP  - 79
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a6/
LA  - ru
ID  - FAA_2013_47_1_a6
ER  - 
%0 Journal Article
%A A. F. Ber
%A F. A. Sukochev
%T Commutator Estimates in von Neumann Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 77-79
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a6/
%G ru
%F FAA_2013_47_1_a6
A. F. Ber; F. A. Sukochev. Commutator Estimates in von Neumann Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 77-79. http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a6/

[1] A. F. Ber, F. A. Sukochev, Trans. Amer. Math. Soc., 264:10 (2012), 5571–5587 ; http://arxiv.org/abs/1008.3210 | DOI | MR

[2] J. Calkin, Ann. of Math., 42 (1941), 839–873 | DOI | MR | Zbl

[3] M. J. Hoffman, Indiana Univer. Math. J., 30:6 (1981), 859–869 | DOI | MR | Zbl

[4] S. Sakai, $C^{*}$-algebras and $W^{*}$-algebras, Springer-Verlag, New York–Heidelberg, 1971 | MR | Zbl

[5] M. A. Muratov, V. I. Chilin, Algebry izmerimykh i lokalno izmerimykh operatorov, Pratsi In-tu matematiki NAN Ukraïni, 69, In-t matematiki NAN Ukraïni, Kiïv, 2007 | Zbl