Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2013_47_1_a4, author = {A. E. Mironov and T. E. Panov}, title = {Intersections of {Quadrics,} {Moment-Angle} {Manifolds,} and {Hamiltonian-Minimal} {Lagrangian} {Embeddings}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {47--61}, publisher = {mathdoc}, volume = {47}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a4/} }
TY - JOUR AU - A. E. Mironov AU - T. E. Panov TI - Intersections of Quadrics, Moment-Angle Manifolds, and Hamiltonian-Minimal Lagrangian Embeddings JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2013 SP - 47 EP - 61 VL - 47 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a4/ LA - ru ID - FAA_2013_47_1_a4 ER -
%0 Journal Article %A A. E. Mironov %A T. E. Panov %T Intersections of Quadrics, Moment-Angle Manifolds, and Hamiltonian-Minimal Lagrangian Embeddings %J Funkcionalʹnyj analiz i ego priloženiâ %D 2013 %P 47-61 %V 47 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a4/ %G ru %F FAA_2013_47_1_a4
A. E. Mironov; T. E. Panov. Intersections of Quadrics, Moment-Angle Manifolds, and Hamiltonian-Minimal Lagrangian Embeddings. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 47-61. http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a4/
[1] H. Anciaux, I. Castro, “Construction of Hamiltonian-minimal Lagrangian submanifolds in complex Euclidean space”, Results Math., 60:1–4 (2011), 325–349 ; http://arxiv.org/abs/0906.4305 | DOI | MR | Zbl
[2] A. Amarzaya, Y. Ohnita, “On Hamiltonian stability of certain $H$-minimal Lagrangian submanifolds and related problems”, General Study on Riemannian Submanifolds, RIMS Kokyuroku, 1292, Kyoto University, Kyoto, 2002, 72–93 | MR
[3] A. Amarzaya, Y. Ohnita, Hamiltonian stability of certan symmetric $R$-spaces embedded in complex Euclidian spaces, Tokyo Metropolitan University preprint series, No. 13, 2002 | MR
[4] P. Biran, “Geometry of symplectic intersections”, Proceedings of ICM, Vol. 2 (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 241–256 | MR
[5] F. Bosio, L. Meersseman, “Real quadrics in $\mathbb C^n$, complex manifolds and convex polytopes”, Acta Math., 197:1 (2006), 53–127 | DOI | MR | Zbl
[6] V. M. Buchstaber, “Lectures on Toric Topology”, Trends in Math., 10, no. 1, Information Center for Math. Sci., KAIST, 2008, 1–64
[7] V. M. Buchstaber, T. E. Panov, Torus Actions and Their Applications in Topology and Combinatorics, Univ. Lecture Series, 24, Amer. Math. Soc., Providence, R.I., 2002 | DOI | MR | Zbl
[8] I. Castro, H. Li, F. Urbano, “Hamiltonian-minimal Lagrangian submanifolds in complex space form”, Pacific J. Math., 227:1 (2006), 43–63 | DOI | MR | Zbl
[9] I. Castro, F. Urbano, “Examples of unstable Hamiltonian-minimal Lagrangian tori in $\mathbb C^2$”, Compositio Math., 111:1 (1998), 1–14 | DOI | MR | Zbl
[10] Bang-Yen Chen, O. J. Garay, “Classification of Hamiltonian-stationary Lagrangian sumbanifolds of constant in $\mathbb C P^3$ with positive nullity”, Nonlinear Anal., 69:2 (2008), 747–762 | DOI | MR | Zbl
[11] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[12] T. Delzant, “Hamiltoniens périodiques et images convexes de l'application moment”, Bull. Soc. Math. France, 116:3 (1988), 315–339 | DOI | MR | Zbl
[13] Y. Dong, “Hamiltonian-minimal Lagrangian submanifolds in Kaehler manifolds with symmetries”, Nonlinear Anal., 67:3 (2007), 865–882 | DOI | MR | Zbl
[14] S. Gitler, S. Lopez de Medrano, Intersections of quadrics, moment-angle manifolds and connected sums, http://arxiv.org/abs/0901.2580 | MR
[15] M. Gromov, “Pseudoholomorphic curves in symplectic manifolds”, Invent. Math., 82:2 (1985), 307–347 | DOI | MR | Zbl
[16] M. Haskins, N. Kapouleas, Twisted products and $SO(p)\times SO(q)$-invariant special Lagrangian cones, http://arxiv.org/abs/1005.1419 | MR
[17] F. Hélein, P. Romon, “Hamiltonian stationary Lagrangian surfaces in $\mathbb C^2$”, Comm. Anal. Geom., 10:1 (2002), 79–126 | DOI | MR | Zbl
[18] F. Hélein, P. Romon, “Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions”, Comm. Math. Helv., 75:4 (2000), 688–680 | DOI | MR
[19] D. Joyce, “Special Lagrangian $m$-folds in $\mathbb C^m$ with symmetries”, Duke Math. J., 115:1 (2002), 1–51 | DOI | MR | Zbl
[20] S. Lopez de Medrano, “Topology of the intersection of quadrics in $\mathbb R^n$”, Algebraic Topology, Lecture Notes in Math., 1370, Springer-Verlag, Berlin, 1989, 280–292 | DOI | MR
[21] Hui Ma, “Hamiltonian stationary Lagrangian surfaces in $\mathbb CP^2$”, Ann. Global. Anal. Geom., 27:1 (2005), 1–16 | DOI | MR | Zbl
[22] A. E. Mironov, “O gamiltonovo-minimalnykh lagranzhevykh torakh v $\mathbb CP^2$”, Sib. matem. zhurn., 44:6 (2003), 1324–1328 | MR | Zbl
[23] A. E. Mironov, “O novykh primerakh gamiltonovo-minimalnykh i minimalnykh lagranzhevykh podmnogoobrazii v $\mathbb C^n$ i $\mathbb C P^n$”, Matem. sb., 195:1 (2004), 89–102 | DOI | MR | Zbl
[24] A. E. Mironov, Dafeng Zuo, “On a family of conformally flat Hamiltonian-minimal Lagrangian tori in $\mathbb C P^3$”, Internat. Math. Res. Notices, 2008 | DOI | MR
[25] S. Nemirovski, “Lagrangian Klein bottles in $\mathbb R^{2n}$”, Geom. Funct. Anal., 19:3 (2009), 902–909 ; http://arxiv.org/abs/0712.1760 | DOI | MR | Zbl
[26] Yong-Geun Oh, “Volume minimization of Lagrangian submanifolds under Hamiltonian deformations”, Math. Z., 212:2 (1993), 175–192 | MR | Zbl
[27] T. Panov, “Moment-angle manifolds and complexes”, Trends in Math., 12, Information Center for Math. Sci., KAIST, 2010, 43–69; http://arxiv.org/abs/1008.5047
[28] T. Panov, Y. Ustinovsky, “Complex-analytic structures on moment-angle manifolds”, Moscow Math. J. (to appear) | MR
[29] A. Postnikov, “Permutohedra, associahedra, and beyond”, Internat. Math. Res. Notices, 6 (2009), 1026–1106 ; http://arxiv.org/abs/math/0507163 | DOI | MR | Zbl
[30] P. Seidel, “Graded Lagrangian submanifolds”, Bull. Soc. Math. Fr., 128:1 (2000), 103–149 | DOI | MR | Zbl
[31] V. V. Shevchishin, “Lagranzhevy vlozheniya butylki Kleina i kombinatornye svoistva gruppy klassov otobrazhenii”, Izv. RAN. Ser. matem., 73:4 (2009), 153–224 | DOI | MR | Zbl