Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2013_47_1_a2, author = {A. A. Komech and A. I. Komech}, title = {On the {Titchmarsh} {Convolution} {Theorem} for {Distributions} on the {Circle}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {26--32}, publisher = {mathdoc}, volume = {47}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a2/} }
TY - JOUR AU - A. A. Komech AU - A. I. Komech TI - On the Titchmarsh Convolution Theorem for Distributions on the Circle JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2013 SP - 26 EP - 32 VL - 47 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a2/ LA - ru ID - FAA_2013_47_1_a2 ER -
A. A. Komech; A. I. Komech. On the Titchmarsh Convolution Theorem for Distributions on the Circle. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 26-32. http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a2/
[1] L. Khërmander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, t. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986
[2] A. I. Komech, A. A. Komech, “Global attractor for a nonlinear oscillator coupled to the Klein–Gordon field”, Arch. Ration. Mech. Anal., 185:1 (2007), 105–142 | DOI | MR | Zbl
[3] B. Y. Levin, Lectures on Entire Functions, In collaboration with Yu. Lyubarskii, M. Sodin and V. Tkachenko, Transl. Math. Monographs, 150, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl
[4] J.-L. Lions, “Supports de produits de composition. I”, C. R. Acad. Sci. Paris, 232 (1951), 1530–1532 | MR | Zbl
[5] W. Strauss, L. Vazquez, “Numerical solution of a nonlinear Klein–Gordon equation”, J. Comput. Phys., 28:2 (1978), 271–278 | DOI | MR | Zbl
[6] E. Titchmarsh, “The zeros of certain integral functions”, Proc. London Math. Soc., 25 (1926), 283–302 | DOI | MR | Zbl
[7] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR