On the Titchmarsh Convolution Theorem for Distributions on the Circle
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 26-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a version of the Titchmarsh convolution theorem for distributions on the circle. We show that a certain “naïve” form of the Titchmarsh theorem can be violated, but only for the convolution of distributions with certain symmetry properties.
Keywords: Titchmarsh convolution theorem, symmetry properties, periodic distributions.
@article{FAA_2013_47_1_a2,
     author = {A. A. Komech and A. I. Komech},
     title = {On the {Titchmarsh} {Convolution} {Theorem} for {Distributions} on the {Circle}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {26--32},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a2/}
}
TY  - JOUR
AU  - A. A. Komech
AU  - A. I. Komech
TI  - On the Titchmarsh Convolution Theorem for Distributions on the Circle
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 26
EP  - 32
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a2/
LA  - ru
ID  - FAA_2013_47_1_a2
ER  - 
%0 Journal Article
%A A. A. Komech
%A A. I. Komech
%T On the Titchmarsh Convolution Theorem for Distributions on the Circle
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 26-32
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a2/
%G ru
%F FAA_2013_47_1_a2
A. A. Komech; A. I. Komech. On the Titchmarsh Convolution Theorem for Distributions on the Circle. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 26-32. http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a2/

[1] L. Khërmander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, t. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986

[2] A. I. Komech, A. A. Komech, “Global attractor for a nonlinear oscillator coupled to the Klein–Gordon field”, Arch. Ration. Mech. Anal., 185:1 (2007), 105–142 | DOI | MR | Zbl

[3] B. Y. Levin, Lectures on Entire Functions, In collaboration with Yu. Lyubarskii, M. Sodin and V. Tkachenko, Transl. Math. Monographs, 150, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl

[4] J.-L. Lions, “Supports de produits de composition. I”, C. R. Acad. Sci. Paris, 232 (1951), 1530–1532 | MR | Zbl

[5] W. Strauss, L. Vazquez, “Numerical solution of a nonlinear Klein–Gordon equation”, J. Comput. Phys., 28:2 (1978), 271–278 | DOI | MR | Zbl

[6] E. Titchmarsh, “The zeros of certain integral functions”, Proc. London Math. Soc., 25 (1926), 283–302 | DOI | MR | Zbl

[7] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR