On an Equivariant Analogue of the Monodromy Zeta Function
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 17-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We offer an equivariant analogue of the monodromy zeta function of a germ invariant with respect to an action of a finite group $G$ as an element of the Grothendieck ring of finite $(\mathbb{Z}\times G)$-sets. We state equivariant analogues of the Sebastiani–Thom theorem and of the A'Campo formula.
Keywords: finite group action, zeta function of a map
Mots-clés : monodromy.
@article{FAA_2013_47_1_a1,
     author = {S. M. Gusein-Zade},
     title = {On an {Equivariant} {Analogue} of the {Monodromy} {Zeta} {Function}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {17--25},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a1/}
}
TY  - JOUR
AU  - S. M. Gusein-Zade
TI  - On an Equivariant Analogue of the Monodromy Zeta Function
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 17
EP  - 25
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a1/
LA  - ru
ID  - FAA_2013_47_1_a1
ER  - 
%0 Journal Article
%A S. M. Gusein-Zade
%T On an Equivariant Analogue of the Monodromy Zeta Function
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 17-25
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a1/
%G ru
%F FAA_2013_47_1_a1
S. M. Gusein-Zade. On an Equivariant Analogue of the Monodromy Zeta Function. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 17-25. http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a1/

[1] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. T. II. Monodromiya i asimptotiki integralov, Nauka, M., 1984 | MR

[2] N. A'Campo, “La fonction zêta d'une monodromie”, Comm. Math. Helv., 50 (1975), 233–248 | DOI | MR | Zbl

[3] A. Campillo, F. Delgado, S. M. Gusein-Zade, “Equivariant Poincaré series of filtrations”, Revista Matemática Complutense, 26:1 (2013), 241–251 ; http://arxiv.org/abs/1005.5656 | DOI | MR | Zbl

[4] C. H. Clemens, “Picard–Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities”, Trans. Amer. Math. Soc., 136 (1969), 93–108 | DOI | MR | Zbl

[5] W. Ebeling, S. M. Gusein-Zade, “Saito duality between Burnside rings for invertible polynomials”, Bull. London Math. Soc., 44:4 (2012), 814–822 ; http://arxiv.org/abs/1105.1964 | DOI | MR | Zbl

[6] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernandez, On an equivariant version of the zeta function of a transformation, http://arxiv.org/abs/1203.3344 | MR

[7] L{ê} Dũng Tráng, “Some remarks on relative monodromy.”, Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, 397–403 | MR

[8] W. Lück, J. Rosenberg, “The equivariant Lefschetz fixed point theorem for proper cocompact $G$-manifolds”, High-dimensional manifold topology, World Sci. Publ., River Edge, NJ, 2003, 322–361 | DOI | MR | Zbl

[9] T. tom Dieck, Transformation Groups and Representation Theory, Lecture Notes in Math., 766, Springer-Verlag, Berlin, 1979 | MR | Zbl

[10] C. T. C. Wall, “A note on symmetry of singularities”, Bull. London Math. Soc., 12:3 (1980), 169–175 | DOI | MR | Zbl