On an Equivariant Analogue of the Monodromy Zeta Function
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 17-25
Voir la notice de l'article provenant de la source Math-Net.Ru
We offer an equivariant analogue of the monodromy zeta function of a germ invariant with respect to an action of a finite group $G$ as an element of the Grothendieck ring of finite $(\mathbb{Z}\times G)$-sets. We state
equivariant analogues of the Sebastiani–Thom theorem and of the A'Campo formula.
Keywords:
finite group action, zeta function of a map
Mots-clés : monodromy.
Mots-clés : monodromy.
@article{FAA_2013_47_1_a1,
author = {S. M. Gusein-Zade},
title = {On an {Equivariant} {Analogue} of the {Monodromy} {Zeta} {Function}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {17--25},
publisher = {mathdoc},
volume = {47},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a1/}
}
S. M. Gusein-Zade. On an Equivariant Analogue of the Monodromy Zeta Function. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 17-25. http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a1/