Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2012_46_4_a4, author = {Yu. V. Turovskii and V. S. Shulman}, title = {Topological {Radicals} and {Joint} {Spectral} {Radius}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {61--82}, publisher = {mathdoc}, volume = {46}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a4/} }
Yu. V. Turovskii; V. S. Shulman. Topological Radicals and Joint Spectral Radius. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 61-82. http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a4/
[1] J. C. Alexander, “Compact Banach algebras”, Proc. London Math. Soc. (3), 18 (1968), 1–18 | DOI | MR | Zbl
[2] M. A. Berger, Y. Wang, “Bounded semigroups of matrices”, Linear Algebra Appl., 166 (1992), 21–27 | DOI | MR | Zbl
[3] P. S. Guinand, “On quasinilpotent semigroups of operators”, Proc. Amer. Math. Soc., 86:3 (1982), 485–486 | DOI | MR | Zbl
[4] N. Danford, Dzh. Shvarts, Lineinye operatory, v. 1, IL, M., 1962
[5] P. G. Dixon, “Topologically irreducible representations and radicals in Banach algebras”, Proc. London Math. Soc. (3), 74:1 (1997), 174–200 | DOI | MR | Zbl
[6] R. Jungers, Joint Spectral Radius, Theory and Applications, LNCIS, 385, Springer-Verlag, Berlin, 2009 | MR
[7] A. Lebow, M. Schechter, “Semigroups of operators and measures of noncompactness”, J. Funct. Anal., 7 (1971), 1–26 | DOI | MR | Zbl
[8] V. I. Lomonosov, “Ob invariantnykh podprostranstvakh semeistva operatorov, kommutiruyuschikh s vpolne nepreryvnym”, Funkts. analiz i ego pril., 7:3 (1973), 55–56 | MR
[9] I. D. Morris, “The generalized Berger–Wang formula and the spectral radius of linear cocycles”, J. Funct. Anal., 262:3 (2012), 811–824, arXiv: 0906.2915v1 | DOI | MR | Zbl
[10] J. D. Newburgh, “The variation of spectra”, Duke Math. J., 18 (1951), 165–176 | DOI | MR | Zbl
[11] J. R. Peters, W. R. Wogen, “Commutative radical operator algebras”, J. Operator Theory, 42:2 (1999), 405–424 | MR | Zbl
[12] G.-C. Rota, G. Strang, “A note on the joint spectral radius”, Indag. Math., 22 (1960), 379–381 | DOI | MR
[13] Yu. V. Turovskii, “Spektralnye svoistva nekotorykh podalgebr Li i spektralnyi radius podmnozhestv v banakhovykh algebrakh”, Spektralnaya teoriya operatorov i ee prilozheniya, 6, «Elm», Baku, 1985, 144–181 | MR
[14] Yu. V. Turovskii, V. S. Shulman, “Radikaly v banakhovykh algebrakh i nekotorye problemy teorii radikalnykh banakhovykh algebr”, Funkts. analiz i ego pril., 35:4 (2001), 88–91 | DOI | MR | Zbl
[15] V. S. Shulman, “Ob invariantnykh podprostranstvakh volterrovykh operatorov”, Funkts. analiz i ego pril., 18:2 (1984), 85–86 | MR | Zbl
[16] V. S. Shulman, Yu. V. Turovskii, “Joint spectral radius, operator semigroups and a problem of W. Wojtyński”, J. Funct. Anal., 177:2 (2000), 383–441 | DOI | MR | Zbl
[17] V. S. Shulman, Yu. V. Turovskii, “Formulae for joint spectral radii of sets of operators”, Studia Math., 149:1 (2002), 23–37 | DOI | MR | Zbl
[18] V. S. Shulman, Yu. V. Turovskii, “Topological radicals, I. Basic properties, tensor products and joint quasinilpotence”, Topological Algebras, Their Applications and Related Topics, 67, Banach Center publications, Warszawa, 2005, 293–333 | DOI | MR | Zbl
[19] V. S. Shulman, Yu. V. Turovskii, Application of topological radicals to calculation of joint spectral radii, arXiv: 0805.0209
[20] V. S. Shulman, Yu. V. Turovskii, “Topological radicals, II. Applications to the spectral theory of multiplication operators”, Elementary Operators and Their Applications, Oper. Theory Adv. Appl., 212, Birkhäuser, Basel, 2011, 45–114 | MR | Zbl
[21] Yu. V. Turovskii, “Volterra semigroups have invariant subspaces”, J. Funct. Anal., 162:2 (1999), 313–323 | DOI | MR
[22] K. Vala, “On compact sets of compact operators”, Ann. Acad. Sci. Fenn. Ser. A I, 351 (1964), 1–8 | MR