Topological Radicals and Joint Spectral Radius
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 61-82

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the joint spectral radius $\rho(M)$ of a precompact set $M$ of operators on a Banach space equals the maximum of two numbers, the joint spectral radius $\rho_{e}(M)$ of the image of $M$ in the Calkin algebra and the BW-radius $r(M)$. Similar results related to general normed algebras are also obtained. The proofs are based on the theory of topological radicals of normed algebras.
Keywords: joint spectral radius, the Berger–Wang formula, topological radical, invariant subspace.
@article{FAA_2012_46_4_a4,
     author = {Yu. V. Turovskii and V. S. Shulman},
     title = {Topological {Radicals} and {Joint} {Spectral} {Radius}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {61--82},
     publisher = {mathdoc},
     volume = {46},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a4/}
}
TY  - JOUR
AU  - Yu. V. Turovskii
AU  - V. S. Shulman
TI  - Topological Radicals and Joint Spectral Radius
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 61
EP  - 82
VL  - 46
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a4/
LA  - ru
ID  - FAA_2012_46_4_a4
ER  - 
%0 Journal Article
%A Yu. V. Turovskii
%A V. S. Shulman
%T Topological Radicals and Joint Spectral Radius
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 61-82
%V 46
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a4/
%G ru
%F FAA_2012_46_4_a4
Yu. V. Turovskii; V. S. Shulman. Topological Radicals and Joint Spectral Radius. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 61-82. http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a4/