Topological Radicals and Joint Spectral Radius
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 61-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the joint spectral radius $\rho(M)$ of a precompact set $M$ of operators on a Banach space equals the maximum of two numbers, the joint spectral radius $\rho_{e}(M)$ of the image of $M$ in the Calkin algebra and the BW-radius $r(M)$. Similar results related to general normed algebras are also obtained. The proofs are based on the theory of topological radicals of normed algebras.
Keywords: joint spectral radius, the Berger–Wang formula, topological radical, invariant subspace.
@article{FAA_2012_46_4_a4,
     author = {Yu. V. Turovskii and V. S. Shulman},
     title = {Topological {Radicals} and {Joint} {Spectral} {Radius}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {61--82},
     publisher = {mathdoc},
     volume = {46},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a4/}
}
TY  - JOUR
AU  - Yu. V. Turovskii
AU  - V. S. Shulman
TI  - Topological Radicals and Joint Spectral Radius
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 61
EP  - 82
VL  - 46
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a4/
LA  - ru
ID  - FAA_2012_46_4_a4
ER  - 
%0 Journal Article
%A Yu. V. Turovskii
%A V. S. Shulman
%T Topological Radicals and Joint Spectral Radius
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 61-82
%V 46
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a4/
%G ru
%F FAA_2012_46_4_a4
Yu. V. Turovskii; V. S. Shulman. Topological Radicals and Joint Spectral Radius. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 61-82. http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a4/

[1] J. C. Alexander, “Compact Banach algebras”, Proc. London Math. Soc. (3), 18 (1968), 1–18 | DOI | MR | Zbl

[2] M. A. Berger, Y. Wang, “Bounded semigroups of matrices”, Linear Algebra Appl., 166 (1992), 21–27 | DOI | MR | Zbl

[3] P. S. Guinand, “On quasinilpotent semigroups of operators”, Proc. Amer. Math. Soc., 86:3 (1982), 485–486 | DOI | MR | Zbl

[4] N. Danford, Dzh. Shvarts, Lineinye operatory, v. 1, IL, M., 1962

[5] P. G. Dixon, “Topologically irreducible representations and radicals in Banach algebras”, Proc. London Math. Soc. (3), 74:1 (1997), 174–200 | DOI | MR | Zbl

[6] R. Jungers, Joint Spectral Radius, Theory and Applications, LNCIS, 385, Springer-Verlag, Berlin, 2009 | MR

[7] A. Lebow, M. Schechter, “Semigroups of operators and measures of noncompactness”, J. Funct. Anal., 7 (1971), 1–26 | DOI | MR | Zbl

[8] V. I. Lomonosov, “Ob invariantnykh podprostranstvakh semeistva operatorov, kommutiruyuschikh s vpolne nepreryvnym”, Funkts. analiz i ego pril., 7:3 (1973), 55–56 | MR

[9] I. D. Morris, “The generalized Berger–Wang formula and the spectral radius of linear cocycles”, J. Funct. Anal., 262:3 (2012), 811–824, arXiv: 0906.2915v1 | DOI | MR | Zbl

[10] J. D. Newburgh, “The variation of spectra”, Duke Math. J., 18 (1951), 165–176 | DOI | MR | Zbl

[11] J. R. Peters, W. R. Wogen, “Commutative radical operator algebras”, J. Operator Theory, 42:2 (1999), 405–424 | MR | Zbl

[12] G.-C. Rota, G. Strang, “A note on the joint spectral radius”, Indag. Math., 22 (1960), 379–381 | DOI | MR

[13] Yu. V. Turovskii, “Spektralnye svoistva nekotorykh podalgebr Li i spektralnyi radius podmnozhestv v banakhovykh algebrakh”, Spektralnaya teoriya operatorov i ee prilozheniya, 6, «Elm», Baku, 1985, 144–181 | MR

[14] Yu. V. Turovskii, V. S. Shulman, “Radikaly v banakhovykh algebrakh i nekotorye problemy teorii radikalnykh banakhovykh algebr”, Funkts. analiz i ego pril., 35:4 (2001), 88–91 | DOI | MR | Zbl

[15] V. S. Shulman, “Ob invariantnykh podprostranstvakh volterrovykh operatorov”, Funkts. analiz i ego pril., 18:2 (1984), 85–86 | MR | Zbl

[16] V. S. Shulman, Yu. V. Turovskii, “Joint spectral radius, operator semigroups and a problem of W. Wojtyński”, J. Funct. Anal., 177:2 (2000), 383–441 | DOI | MR | Zbl

[17] V. S. Shulman, Yu. V. Turovskii, “Formulae for joint spectral radii of sets of operators”, Studia Math., 149:1 (2002), 23–37 | DOI | MR | Zbl

[18] V. S. Shulman, Yu. V. Turovskii, “Topological radicals, I. Basic properties, tensor products and joint quasinilpotence”, Topological Algebras, Their Applications and Related Topics, 67, Banach Center publications, Warszawa, 2005, 293–333 | DOI | MR | Zbl

[19] V. S. Shulman, Yu. V. Turovskii, Application of topological radicals to calculation of joint spectral radii, arXiv: 0805.0209

[20] V. S. Shulman, Yu. V. Turovskii, “Topological radicals, II. Applications to the spectral theory of multiplication operators”, Elementary Operators and Their Applications, Oper. Theory Adv. Appl., 212, Birkhäuser, Basel, 2011, 45–114 | MR | Zbl

[21] Yu. V. Turovskii, “Volterra semigroups have invariant subspaces”, J. Funct. Anal., 162:2 (1999), 313–323 | DOI | MR

[22] K. Vala, “On compact sets of compact operators”, Ann. Acad. Sci. Fenn. Ser. A I, 351 (1964), 1–8 | MR