On the Nonexistence of Global Solutions of the Cauchy Problem for the Korteweg--de Vries Equation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 51-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish conditions on the initial data under which the Cauchy problem for the Korteweg–de Vries equation does not admit a solution global in $t>0$. The proof of the results is based on the nonlinear capacity method (Dokl. RAN, 357:5 (1997), 592–594). In closing, we provide an example.
Keywords: blow-up, KdV equation, initial-boundary value problem, Cauchy problem, nonlinear capacity.
@article{FAA_2012_46_4_a3,
     author = {S. I. Pokhozhaev},
     title = {On the {Nonexistence} of {Global} {Solutions} of the {Cauchy} {Problem} for the {Korteweg--de} {Vries} {Equation}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {51--60},
     publisher = {mathdoc},
     volume = {46},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a3/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - On the Nonexistence of Global Solutions of the Cauchy Problem for the Korteweg--de Vries Equation
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 51
EP  - 60
VL  - 46
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a3/
LA  - ru
ID  - FAA_2012_46_4_a3
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T On the Nonexistence of Global Solutions of the Cauchy Problem for the Korteweg--de Vries Equation
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 51-60
%V 46
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a3/
%G ru
%F FAA_2012_46_4_a3
S. I. Pokhozhaev. On the Nonexistence of Global Solutions of the Cauchy Problem for the Korteweg--de Vries Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 51-60. http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a3/

[1] R. Dodd, Dzh. Eilbek, Dzh. Gibbon, Kh. Morris, Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR

[2] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR

[3] A. V. Faminskii, “Global well-posedness of two initial-boundary value problems for the Korteweg–de Vries equation”, Differential Integral Equations, 20:6 (2007), 601–642 | DOI | MR | Zbl

[4] Z. Guo, “Global well-posedness of Korteweg–de Vries equation in $H^{-3/4}(\mathbb{R})$”, J. Math. Pures Appl. (9), 91:6 (2009), 583–597 | DOI | MR | Zbl

[5] J. Holmer, “The initial-boundary value problem for the Korteweg–de Vries equation”, Comm. Partial Differential Equations, 31:7–9 (2006), 1151–1190 | DOI | MR | Zbl

[6] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Trudy MIRAN, 234, 2001, 3–383 | MR | Zbl

[7] S. I. Pokhozhaev, “Suschestvenno nelineinye emkosti, porozhdennye differentsialnymi operatorami”, Dokl. RAN, 357:5 (1997), 592–594 | MR | Zbl

[8] S. I. Pokhozhaev, “Ob odnom klasse nachalno-kraevykh zadach dlya uravnenii tipa Kortevega–de Friza”, Differentsialnye uravneniya, 48:3 (2012), 368–374 | Zbl

[9] S. I. Pokhozhaev, “Ob otsutstvii globalnykh reshenii nekotorykh nachalno-kraevykh zadach dlya uravneniya Kortevega–de Friza”, Differentsialnye uravneniya, 47:4 (2011), 493–498 | MR | Zbl