Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2012_46_4_a3, author = {S. I. Pokhozhaev}, title = {On the {Nonexistence} of {Global} {Solutions} of the {Cauchy} {Problem} for the {Korteweg--de} {Vries} {Equation}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {51--60}, publisher = {mathdoc}, volume = {46}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a3/} }
TY - JOUR AU - S. I. Pokhozhaev TI - On the Nonexistence of Global Solutions of the Cauchy Problem for the Korteweg--de Vries Equation JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2012 SP - 51 EP - 60 VL - 46 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a3/ LA - ru ID - FAA_2012_46_4_a3 ER -
S. I. Pokhozhaev. On the Nonexistence of Global Solutions of the Cauchy Problem for the Korteweg--de Vries Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 51-60. http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a3/
[1] R. Dodd, Dzh. Eilbek, Dzh. Gibbon, Kh. Morris, Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR
[2] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR
[3] A. V. Faminskii, “Global well-posedness of two initial-boundary value problems for the Korteweg–de Vries equation”, Differential Integral Equations, 20:6 (2007), 601–642 | DOI | MR | Zbl
[4] Z. Guo, “Global well-posedness of Korteweg–de Vries equation in $H^{-3/4}(\mathbb{R})$”, J. Math. Pures Appl. (9), 91:6 (2009), 583–597 | DOI | MR | Zbl
[5] J. Holmer, “The initial-boundary value problem for the Korteweg–de Vries equation”, Comm. Partial Differential Equations, 31:7–9 (2006), 1151–1190 | DOI | MR | Zbl
[6] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Trudy MIRAN, 234, 2001, 3–383 | MR | Zbl
[7] S. I. Pokhozhaev, “Suschestvenno nelineinye emkosti, porozhdennye differentsialnymi operatorami”, Dokl. RAN, 357:5 (1997), 592–594 | MR | Zbl
[8] S. I. Pokhozhaev, “Ob odnom klasse nachalno-kraevykh zadach dlya uravnenii tipa Kortevega–de Friza”, Differentsialnye uravneniya, 48:3 (2012), 368–374 | Zbl
[9] S. I. Pokhozhaev, “Ob otsutstvii globalnykh reshenii nekotorykh nachalno-kraevykh zadach dlya uravneniya Kortevega–de Friza”, Differentsialnye uravneniya, 47:4 (2011), 493–498 | MR | Zbl