Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2012_46_4_a2, author = {G. I. Olshanskii and A. A. Osinenko}, title = {Multivariate {Jacobi} {Polynomials} and the {Selberg} {Integral}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {31--50}, publisher = {mathdoc}, volume = {46}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a2/} }
TY - JOUR AU - G. I. Olshanskii AU - A. A. Osinenko TI - Multivariate Jacobi Polynomials and the Selberg Integral JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2012 SP - 31 EP - 50 VL - 46 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a2/ LA - ru ID - FAA_2012_46_4_a2 ER -
G. I. Olshanskii; A. A. Osinenko. Multivariate Jacobi Polynomials and the Selberg Integral. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 31-50. http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a2/
[1] G. E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge Univ. Press, 1999 | MR | Zbl
[2] A. Borodin, “Duality of orthogonal polynomials on a finite set”, J. Statist. Phys., 109:5–6 (2002), 1109–1120 | DOI | MR | Zbl
[3] A. Borodin, G. Olshanski, “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. of Math., 161:3 (2005), 1319–1422 | DOI | MR | Zbl
[4] A. Borodin, G. Olshanski, “Representation theory and random point processes”, European Congress of Mathematics (Stockholm, Sweden, June 27–July 2, 2004), Eur. Math. Soc., Zürich, 2005, 73–94 | MR | Zbl
[5] A. Borodin, G. Olshanski, “Random partitions and the gamma kernel”, Adv. Math., 194 (2005), 141–202, arXiv: math-ph/0305043 | DOI | MR | Zbl
[6] A. Borodin, G. Olshanski, “The boundary of the Gelfand–Tsetlin graph: A new approach”, Adv. Math., 230:4–6 (2012), 1738–1779, arXiv: 1109.1412 | DOI | MR | Zbl
[7] A. Borodin, G. Olshanski, “The Young bouquet and its boundary”, Moscow Math. J. (to appear) , arXiv: 1110.4458 | MR
[8] A. Erdelyi et al., Higher Transcendental Functions, v. 1–2, Mc Graw-Hill Book Company, New York–Toronto–London, 1953
[9] P. J. Forrester, S. O. Warnaar, “The importance of the Selberg integral”, Bull. Amer. Math. Soc. (New Ser.), 45:4 (2008), 489–534 | DOI | MR | Zbl
[10] R. Godement, “A theory of spherical functions I”, Trans. Amer. Math. Soc., 73:3 (1952), 496–556 | DOI | MR | Zbl
[11] K. W. J. Kadell, “The Selberg–Jack symmetric functions”, Adv. Math., 130:1 (1997), 33–102 | DOI | MR | Zbl
[12] S. Kerov, “The boundary of Young lattice and random Young tableaux”, Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 24, Amer. Math. Soc., Providence, RI, 1996, 133–158 | DOI | MR | Zbl
[13] S. V. Kerov, “Mnogomernoe gipergeometricheskoe raspredelenie i kharaktery unitarnoi gruppy”, Zap. nauchn. semin. POMI, 301, 2003, 35–91 | MR | Zbl
[14] S. Kerov, A. Okounkov, G. Olshanski, “The boundary of the Young graph with Jack edge multiplicities”, Internat. Math. Res. Notices, 1998:4 (1998), 173–199, arXiv: q-alg/9703037 | DOI | MR | Zbl
[15] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group. A deformation of the regular representation”, C. R. Acad. Sci. Paris, Sér. I, 316:8 (1993), 773–778 | MR | Zbl
[16] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158:3 (2004), 551–642, arXiv: math/0312270 | DOI | MR | Zbl
[17] W. König, “Orthogonal polynomial ensembles in probability theory”, Probab. Surv., 2 (2005), 385–447 | DOI | MR | Zbl
[18] C. Krattenthaler, “Advanced determinant calculus”, Sém. Lothar. Combin., 42 (1999), Art. B42q, arXiv: math/9902004 | MR | Zbl
[19] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Clarendon Press, Oxford Univ. Press, Oxford, New York, 1995 | MR | Zbl
[20] K. Mimachi, “A duality of the Macdonald-Koornwinder polynomials and its application to integral representations”, Duke Math. J., 107:2 (2001), 265–281 | DOI | MR | Zbl
[21] Yu. A. Neretin, “Beta-integraly i konechnye ortogonalnye sistemy mnogochlenov Vilsona”, Matem. sb., 193:7 (2002), 131–148, arXiv: math/0206199 | DOI | MR | Zbl
[22] A. Okounkov, G. Olshanski, “Asymptotics of Jack polynomials as the number of variables goes to infinity”, Internat. Math. Res. Notices, 1998:13 (1998), 641–682 | DOI | MR | Zbl
[23] A. Okounkov, G. Olshanski, “Limits of $BC$-type orthogonal polynomials as the number of variables goes to infinity”, Jack, Hall-Littlewood and Macdonald polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 281–318 | DOI | MR | Zbl
[24] G. Olshanski, “The problem of harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 205:2 (2003), 464–524, arXiv: math/0109193 | DOI | MR | Zbl
[25] G. I. Olshanskii, “Veroyatnostnye mery na dualnykh ob'ektakh k kompaktnym simmetricheskim prostranstvam i gipergeometricheskie tozhdestva”, Funkts. analiz i ego pril., 37:4 (2003), 49–73 | DOI | MR | Zbl
[26] G. Olshanski, “Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes”, Zap. nauchn. semin. POMI, 378, 2010, 81–110, arXiv: 1009.2037 | MR
[27] G. Olshanski, “Laguerre and Meixner orthogonal bases in the algebra of symmetric functions”, Internat. Math. Res. Notices, 2012:16 (2012), 3615–3679, arXiv: 1103.5848 | DOI | MR | Zbl
[28] D. Pickrell, “Measures on infinite dimensional Grassmann manifold”, J. Funct. Anal., 70:2 (1987), 323–356 | DOI | MR | Zbl
[29] D. Pickrell, “Separable representations for automorphism groups of infinite symmetric spaces”, J. Funct. Anal., 90:1 (1990), 1–26 | DOI | MR | Zbl
[30] E. Thoma, “Die unzerlegbaren, positive-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe”, Math. Z., 85 (1964), 40–61 | DOI | MR | Zbl
[31] A. M. Vershik, S. V. Kerov, “Asimptoticheskaya teoriya kharakterov simmetricheskokh grupp”, Funkts. analiz i ego pril., 15:4 (1981), 15–27 | MR