Multivariate Jacobi Polynomials and the Selberg Integral
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 31-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is motivated by the problem of harmonic analysis on “big” groups and can be viewed as a continuation of the first author's paper in Functional Anal. Appl. 37 (2003), no. 4, 281–301. Our main result is the proof of the existence of a family of probability distributions with infinite-dimensional support; these distributions are analogs of multidimensional Euler beta-distributions that appear in the Selberg integral.
Keywords: multivariate Jacobi polynomials, Selberg integral, branching graphs.
@article{FAA_2012_46_4_a2,
     author = {G. I. Olshanskii and A. A. Osinenko},
     title = {Multivariate {Jacobi} {Polynomials} and the {Selberg} {Integral}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {31--50},
     publisher = {mathdoc},
     volume = {46},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a2/}
}
TY  - JOUR
AU  - G. I. Olshanskii
AU  - A. A. Osinenko
TI  - Multivariate Jacobi Polynomials and the Selberg Integral
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 31
EP  - 50
VL  - 46
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a2/
LA  - ru
ID  - FAA_2012_46_4_a2
ER  - 
%0 Journal Article
%A G. I. Olshanskii
%A A. A. Osinenko
%T Multivariate Jacobi Polynomials and the Selberg Integral
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 31-50
%V 46
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a2/
%G ru
%F FAA_2012_46_4_a2
G. I. Olshanskii; A. A. Osinenko. Multivariate Jacobi Polynomials and the Selberg Integral. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 31-50. http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a2/

[1] G. E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge Univ. Press, 1999 | MR | Zbl

[2] A. Borodin, “Duality of orthogonal polynomials on a finite set”, J. Statist. Phys., 109:5–6 (2002), 1109–1120 | DOI | MR | Zbl

[3] A. Borodin, G. Olshanski, “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. of Math., 161:3 (2005), 1319–1422 | DOI | MR | Zbl

[4] A. Borodin, G. Olshanski, “Representation theory and random point processes”, European Congress of Mathematics (Stockholm, Sweden, June 27–July 2, 2004), Eur. Math. Soc., Zürich, 2005, 73–94 | MR | Zbl

[5] A. Borodin, G. Olshanski, “Random partitions and the gamma kernel”, Adv. Math., 194 (2005), 141–202, arXiv: math-ph/0305043 | DOI | MR | Zbl

[6] A. Borodin, G. Olshanski, “The boundary of the Gelfand–Tsetlin graph: A new approach”, Adv. Math., 230:4–6 (2012), 1738–1779, arXiv: 1109.1412 | DOI | MR | Zbl

[7] A. Borodin, G. Olshanski, “The Young bouquet and its boundary”, Moscow Math. J. (to appear) , arXiv: 1110.4458 | MR

[8] A. Erdelyi et al., Higher Transcendental Functions, v. 1–2, Mc Graw-Hill Book Company, New York–Toronto–London, 1953

[9] P. J. Forrester, S. O. Warnaar, “The importance of the Selberg integral”, Bull. Amer. Math. Soc. (New Ser.), 45:4 (2008), 489–534 | DOI | MR | Zbl

[10] R. Godement, “A theory of spherical functions I”, Trans. Amer. Math. Soc., 73:3 (1952), 496–556 | DOI | MR | Zbl

[11] K. W. J. Kadell, “The Selberg–Jack symmetric functions”, Adv. Math., 130:1 (1997), 33–102 | DOI | MR | Zbl

[12] S. Kerov, “The boundary of Young lattice and random Young tableaux”, Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 24, Amer. Math. Soc., Providence, RI, 1996, 133–158 | DOI | MR | Zbl

[13] S. V. Kerov, “Mnogomernoe gipergeometricheskoe raspredelenie i kharaktery unitarnoi gruppy”, Zap. nauchn. semin. POMI, 301, 2003, 35–91 | MR | Zbl

[14] S. Kerov, A. Okounkov, G. Olshanski, “The boundary of the Young graph with Jack edge multiplicities”, Internat. Math. Res. Notices, 1998:4 (1998), 173–199, arXiv: q-alg/9703037 | DOI | MR | Zbl

[15] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group. A deformation of the regular representation”, C. R. Acad. Sci. Paris, Sér. I, 316:8 (1993), 773–778 | MR | Zbl

[16] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158:3 (2004), 551–642, arXiv: math/0312270 | DOI | MR | Zbl

[17] W. König, “Orthogonal polynomial ensembles in probability theory”, Probab. Surv., 2 (2005), 385–447 | DOI | MR | Zbl

[18] C. Krattenthaler, “Advanced determinant calculus”, Sém. Lothar. Combin., 42 (1999), Art. B42q, arXiv: math/9902004 | MR | Zbl

[19] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Clarendon Press, Oxford Univ. Press, Oxford, New York, 1995 | MR | Zbl

[20] K. Mimachi, “A duality of the Macdonald-Koornwinder polynomials and its application to integral representations”, Duke Math. J., 107:2 (2001), 265–281 | DOI | MR | Zbl

[21] Yu. A. Neretin, “Beta-integraly i konechnye ortogonalnye sistemy mnogochlenov Vilsona”, Matem. sb., 193:7 (2002), 131–148, arXiv: math/0206199 | DOI | MR | Zbl

[22] A. Okounkov, G. Olshanski, “Asymptotics of Jack polynomials as the number of variables goes to infinity”, Internat. Math. Res. Notices, 1998:13 (1998), 641–682 | DOI | MR | Zbl

[23] A. Okounkov, G. Olshanski, “Limits of $BC$-type orthogonal polynomials as the number of variables goes to infinity”, Jack, Hall-Littlewood and Macdonald polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 281–318 | DOI | MR | Zbl

[24] G. Olshanski, “The problem of harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 205:2 (2003), 464–524, arXiv: math/0109193 | DOI | MR | Zbl

[25] G. I. Olshanskii, “Veroyatnostnye mery na dualnykh ob'ektakh k kompaktnym simmetricheskim prostranstvam i gipergeometricheskie tozhdestva”, Funkts. analiz i ego pril., 37:4 (2003), 49–73 | DOI | MR | Zbl

[26] G. Olshanski, “Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes”, Zap. nauchn. semin. POMI, 378, 2010, 81–110, arXiv: 1009.2037 | MR

[27] G. Olshanski, “Laguerre and Meixner orthogonal bases in the algebra of symmetric functions”, Internat. Math. Res. Notices, 2012:16 (2012), 3615–3679, arXiv: 1103.5848 | DOI | MR | Zbl

[28] D. Pickrell, “Measures on infinite dimensional Grassmann manifold”, J. Funct. Anal., 70:2 (1987), 323–356 | DOI | MR | Zbl

[29] D. Pickrell, “Separable representations for automorphism groups of infinite symmetric spaces”, J. Funct. Anal., 90:1 (1990), 1–26 | DOI | MR | Zbl

[30] E. Thoma, “Die unzerlegbaren, positive-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe”, Math. Z., 85 (1964), 40–61 | DOI | MR | Zbl

[31] A. M. Vershik, S. V. Kerov, “Asimptoticheskaya teoriya kharakterov simmetricheskokh grupp”, Funkts. analiz i ego pril., 15:4 (1981), 15–27 | MR