Isometries with Dense Windings of the Torus in $C(M)$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 3, pp. 89-91

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C(M)$ be the space of all continuous functions on $M\subset\mathbb{C}$. We consider the multiplication operator $T\colon C(M)\to C(M)$ defined by $Tf(z)=zf(z)$ and the torus $O(M)=\{f:M\to\mathbb{C},\, \|f\|=\|\frac{1}{f}\|=1\}$. If $M$ is a Kronecker set, then the $T$-orbits of the points of the torus $\frac12 O(M)$ are dense in $\frac12 O(M)$ and are $\frac12$-dense in the unit ball of $C(M)$.
Keywords: Kronecker set, asymptotically finite-dimensional operator.
@article{FAA_2012_46_3_a7,
     author = {K. V. Storozhuk},
     title = {Isometries with {Dense} {Windings} of the {Torus} in $C(M)$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {89--91},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a7/}
}
TY  - JOUR
AU  - K. V. Storozhuk
TI  - Isometries with Dense Windings of the Torus in $C(M)$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 89
EP  - 91
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a7/
LA  - ru
ID  - FAA_2012_46_3_a7
ER  - 
%0 Journal Article
%A K. V. Storozhuk
%T Isometries with Dense Windings of the Torus in $C(M)$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 89-91
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a7/
%G ru
%F FAA_2012_46_3_a7
K. V. Storozhuk. Isometries with Dense Windings of the Torus in $C(M)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 3, pp. 89-91. http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a7/