Absolutely Convergent Fourier Series. An Improvement of the Beurling--Helson Theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 52-65

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the space $A(\mathbb T)$ of all continuous functions $f$ on the circle $\mathbb T$ such that the sequence of Fourier coefficients $\widehat{f}=\{\widehat{f}(k),\,k\in\mathbb Z\}$ belongs to $l^1(\mathbb Z)$. The norm on $A(\mathbb T)$ is defined by $\|f\|_{A(\mathbb T)}=\|\widehat{f}\|_{l^1(\mathbb Z)}$. According to the well-known Beurling–Helson theorem, if $\varphi\colon \mathbb T\to\mathbb T$ is a continuous mapping such that $\|e^{in\varphi}\|_{A(\mathbb T)}=O(1)$, $n\in\mathbb Z$, then $\varphi$ is linear. It was conjectured by Kahane that the same conclusion about $\varphi$ is true under the assumption that $\|e^{in\varphi}\|_{A(\mathbb T)}=o(\log |n|)$. We show that if $\|e^{in\varphi}\|_{A(\mathbb T)}=o((\log\log |n|/\log\log\log |n|)^{1/12})$, then $\varphi$ is linear.
Keywords: absolutely convergent Fourier series, Beurling–Helson theorem.
@article{FAA_2012_46_2_a5,
     author = {V. V. Lebedev},
     title = {Absolutely {Convergent} {Fourier} {Series.} {An} {Improvement} of the {Beurling--Helson} {Theorem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {52--65},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a5/}
}
TY  - JOUR
AU  - V. V. Lebedev
TI  - Absolutely Convergent Fourier Series. An Improvement of the Beurling--Helson Theorem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 52
EP  - 65
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a5/
LA  - ru
ID  - FAA_2012_46_2_a5
ER  - 
%0 Journal Article
%A V. V. Lebedev
%T Absolutely Convergent Fourier Series. An Improvement of the Beurling--Helson Theorem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 52-65
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a5/
%G ru
%F FAA_2012_46_2_a5
V. V. Lebedev. Absolutely Convergent Fourier Series. An Improvement of the Beurling--Helson Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 52-65. http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a5/