Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2012_46_2_a5, author = {V. V. Lebedev}, title = {Absolutely {Convergent} {Fourier} {Series.} {An} {Improvement} of the {Beurling--Helson} {Theorem}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {52--65}, publisher = {mathdoc}, volume = {46}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a5/} }
TY - JOUR AU - V. V. Lebedev TI - Absolutely Convergent Fourier Series. An Improvement of the Beurling--Helson Theorem JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2012 SP - 52 EP - 65 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a5/ LA - ru ID - FAA_2012_46_2_a5 ER -
V. V. Lebedev. Absolutely Convergent Fourier Series. An Improvement of the Beurling--Helson Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 52-65. http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a5/
[1] A. Beurling, H. Helson, “Fourier-Stieltjes transforms with bounded powers”, Math. Scand., 1 (1953), 120–126 | DOI | MR | Zbl
[2] Zh.-P. Kakhan, Absolyutno skhodyaschiesya ryady Fure, Mir, M., 1976
[3] J.-P. Kahane, “Quatre leçons sur les homéomorphismes du cercle et les séries de Fourier”, Topics in Modern Harmonic Analysis, Vol. II, Ist. Naz. Alta Mat. Francesco Severi, Roma, 1983, 955–990 | MR
[4] Z. L. Leibenzon, “O koltse funktsii s absolyutno skhodyaschimisya ryadami Fure”, UMN, 9:3(61) (1954), 157–162 | MR
[5] J.-P. Kahane, “Sur certaines classes de séries de Fourier absolument convergentes”, J. Math. Pures Appl., 35:3 (1956), 249–259 | MR | Zbl
[6] V. V. Lebedev, “Diffeomorfizmy okruzhnosti i teorema Berlinga–Khelsona”, Funkts. analiz i ego pril., 36:1 (2002), 30–35 | DOI | MR | Zbl
[7] V. V. Lebedev, “Kolichestvennye otsenki v teoremakh tipa teoremy Berlinga–Khelsona”, Matem. sb., 201:12 (2010), 103–130 | DOI | MR
[8] V. V. Lebedev, “Otsenki v teoremakh tipa teoremy Berlinga–Khelsona. Mnogomernyi sluchai”, Matem. zametki, 90:3 (2011), 394–407 | DOI | MR | Zbl
[9] J.-P. Kahane, “Transformées de Fourier des fonctions sommables”, Proc. Internat. Congr. Math. (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, 114–131 | MR
[10] B. Green, S. Konyagin, “On the Littlewood problem modulo a prime”, Canad. J. Math., 61:1 (2009), 141–164 | DOI | MR | Zbl
[11] E. M. Stein, R. Shakarchi, Fourier Analysis: An Introduction, Princeton Lectures in Analysis, I, Princeton Univ. Press, Princeton, NJ, 2003 | MR
[12] V. Shmidt, Diofantovy priblizheniya, Mir, M., 1983 | MR
[13] R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | MR | Zbl
[14] M. M. Postnikov, Differentsialnaya geometriya, Lektsii po geometrii. Semestr IV, Nauka, M., 1988 | MR | Zbl
[15] T. Sanders, “The Littlewood–Gowers problem”, J. Anal. Math., 101:1 (2007), 123–162 | DOI | MR | Zbl