Real Normalized Differentials and Arbarello's Conjecture
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 37-51

Voir la notice de l'article provenant de la source Math-Net.Ru

Using meromorphic differentials with real periods, we prove Arbarello's conjecture that any compact complex cycle of dimension $g-n$ in the moduli space $\mathcal{M}_g$ of smooth algebraic curves of genus $g$ must intersect the locus of curves having a Weierstrass point of order at most $n$.
Keywords: moduli space of algebraic curves, integrable system, real normalized differential.
@article{FAA_2012_46_2_a4,
     author = {I. M. Krichever},
     title = {Real {Normalized} {Differentials} and {Arbarello's} {Conjecture}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {37--51},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a4/}
}
TY  - JOUR
AU  - I. M. Krichever
TI  - Real Normalized Differentials and Arbarello's Conjecture
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 37
EP  - 51
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a4/
LA  - ru
ID  - FAA_2012_46_2_a4
ER  - 
%0 Journal Article
%A I. M. Krichever
%T Real Normalized Differentials and Arbarello's Conjecture
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 37-51
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a4/
%G ru
%F FAA_2012_46_2_a4
I. M. Krichever. Real Normalized Differentials and Arbarello's Conjecture. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 37-51. http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a4/