Real Normalized Differentials and Arbarello's Conjecture
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 37-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using meromorphic differentials with real periods, we prove Arbarello's conjecture that any compact complex cycle of dimension $g-n$ in the moduli space $\mathcal{M}_g$ of smooth algebraic curves of genus $g$ must intersect the locus of curves having a Weierstrass point of order at most $n$.
Keywords: moduli space of algebraic curves, integrable system, real normalized differential.
@article{FAA_2012_46_2_a4,
     author = {I. M. Krichever},
     title = {Real {Normalized} {Differentials} and {Arbarello's} {Conjecture}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {37--51},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a4/}
}
TY  - JOUR
AU  - I. M. Krichever
TI  - Real Normalized Differentials and Arbarello's Conjecture
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 37
EP  - 51
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a4/
LA  - ru
ID  - FAA_2012_46_2_a4
ER  - 
%0 Journal Article
%A I. M. Krichever
%T Real Normalized Differentials and Arbarello's Conjecture
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 37-51
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a4/
%G ru
%F FAA_2012_46_2_a4
I. M. Krichever. Real Normalized Differentials and Arbarello's Conjecture. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 37-51. http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a4/

[1] E. Arbarello, “Weierstrass points and moduli of curves”, Compositio Math., 29 (1974), 325–342 | MR | Zbl

[2] E. Arbarello, G. Mondello, “Two remarks on the Weierstrass flag”, Compact Moduli spaces and Vector Bundles, Contemporary Mathematics (Proceedings) series, 564 (to appear) | MR | Zbl

[3] Integrability: The Seiberg–Witten and Whitham Equations, eds. H. W. Braden, I. M. Krichever, Gordon and Breach Science Publishers, Amsterdam, 2000 | MR | Zbl

[4] S. Diaz, “Exceptional Weierstrass points and the divisor on moduli space that they define”, Mem. Amer. Math. Soc., 56:327 (1985), Providence, RI | MR

[5] A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, A. Morozov, “Integrability and Seiberg–Witten exact solution”, Phys. Lett. B, 355 (1995), 466–474 | DOI | MR | Zbl

[6] Dzh. Kharris, Ya. Morrison, Moduli krivykh, Mir, M., 2004

[7] S. Grushevsky, I. Krichever, “The universal Whitham hierarchy and geometry of the moduli space of pointed Riemann surfaces”, Surveys in Differ. Geom., 14, Int. Press, Somerville, MA, 2010, 111–129 | DOI | MR | Zbl

[8] S. Grushevsky, I. Krichever, Foliations on the moduli space of curves, vanishing in cohomology, and Calogero–Moser curves, arXiv: 1108.4211

[9] I. M. Krichever, “Spektralnaya teoriya «konechnozonnykh» nestatsionarnykh operatorov Shrëdingera. Nestatsionarnaya model Paierlsa”, Funkts. analiz i ego pril., 20:3 (1986), 42–54 | MR | Zbl

[10] I. M. Krichever, “Metod usredneniya dlya dvumernykh «integriruemykh» uravnenii”, Funkts. analiz i ego pril., 22:3 (1988), 37–52 | MR | Zbl

[11] I. Krichever, “The $\tau$-function of the universal Whitham hierarchy, matrix models, and topological field theories”, Comm. Pure Appl. Math., 47:4 (1994), 437–475 | DOI | MR | Zbl

[12] I. Krichever, D. H. Phong, “On the integrable geometry of $N=2$ supersymmetric gauge theories and soliton equations”, J. Differential Geom., 45 (1997), 445–485 | DOI | MR

[13] I. Krichever, D. H. Phong, “Symplectic forms in the theory of solitons”, Surveys in Differ. Geom., 4, Int. Press, Boston, MA, 1998, 239–313 | DOI | MR | Zbl

[14] E. Looijenga, “On the tautological ring of $\mathcal{M}_g$”, Invent. Math., 121:2 (1995), 411–419 | DOI | MR | Zbl