A Central Limit Theorem for Extremal Characters of the Infinite Symmetric Group
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic behavior of the lengths of the first rows and columns in the random Young diagrams corresponding to extremal characters of the infinite symmetric group is studied. We consider rows and columns with linear growth in $n$ and prove a central limit theorem for their lengths in the case of distinct Thoma parameters. We also prove a more precise statement relating the growth of rows and columns of Young diagrams to a simple independent random sampling model.
Keywords: infinite symmetric group, extremal characters, Young diagrams.
@article{FAA_2012_46_2_a1,
     author = {A. I. Bufetov},
     title = {A {Central} {Limit} {Theorem} for {Extremal} {Characters} of the {Infinite} {Symmetric} {Group}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a1/}
}
TY  - JOUR
AU  - A. I. Bufetov
TI  - A Central Limit Theorem for Extremal Characters of the Infinite Symmetric Group
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 3
EP  - 16
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a1/
LA  - ru
ID  - FAA_2012_46_2_a1
ER  - 
%0 Journal Article
%A A. I. Bufetov
%T A Central Limit Theorem for Extremal Characters of the Infinite Symmetric Group
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 3-16
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a1/
%G ru
%F FAA_2012_46_2_a1
A. I. Bufetov. A Central Limit Theorem for Extremal Characters of the Infinite Symmetric Group. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 3-16. http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a1/

[1] E. Thoma, “Die unzerlegbaren, positive-definiten Klassenfunktionen der äbzahlbar unendlichen symmetrischen Gruppe”, Math. Z., 85 (1964), 40–61 | DOI | MR | Zbl

[2] V. Feray, P.-L. Méliot, Asymptotics of q-Plancherel measures, arXiv: 1001.2180

[3] P.-L. Méliot, A central limit theorem for the characters of the infinite symmetric group and of the infinite Hecke algebra, arXiv: 1105.0091

[4] A. M. Vershik, S. V. Kerov, “Asimptoticheskaya teoriya kharakterov simmetricheskoi gruppy”, Funkts. anal. i ego pril., 15:2 (1982), 15–27 | MR | Zbl

[5] S. Kerov, A. Okounkov, G. Olshanski, “The boundary of the Young graph with Jack edge multiplicities”, Internat. Math. Res. Notices, 1998:4, 173–199 | DOI | MR | Zbl

[6] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158:4 (2004), 551–642 | DOI | MR | Zbl

[7] S. V. Kerov, A. M. Vershik, “The characters of the infinite symmetric group and probability properties of the Robinson–Schensted–Knuth algorithm”, SIAM J. Algebraic Discrete Methods, 7:1 (1986), 116–124 | DOI | MR | Zbl

[8] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1984 | MR

[9] A. Regev, T. Seeman, “Shuffle-invariance of the super-RSK algorithm”, Adv. Appl. Math., 28:1 (2002), 59–81 | DOI | MR

[10] A. Berele, A. Regev, “Hook Young diagrams with applications to combinatorics and representations of Lie superalgebras”, Adv. in Math., 64:2 (1987), 118–175 | DOI | MR | Zbl

[11] W. Fulton, Young Tableaux, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[12] C. Schensted, “Longest increasing and decreasing subsequences”, Canad. J. Math., 13 (1961), 179–191 | DOI | MR | Zbl

[13] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1999 | MR | Zbl

[14] S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis, Translations of Math. Monographs, 219, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl

[15] K. Johansson, “Discrete orthogonal polynomial ensembles and the Plancherel measure”, Ann. of Math., 153:1 (2001), 259–296 | DOI | MR | Zbl