Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2012_46_2_a1, author = {A. I. Bufetov}, title = {A {Central} {Limit} {Theorem} for {Extremal} {Characters} of the {Infinite} {Symmetric} {Group}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--16}, publisher = {mathdoc}, volume = {46}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a1/} }
TY - JOUR AU - A. I. Bufetov TI - A Central Limit Theorem for Extremal Characters of the Infinite Symmetric Group JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2012 SP - 3 EP - 16 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a1/ LA - ru ID - FAA_2012_46_2_a1 ER -
A. I. Bufetov. A Central Limit Theorem for Extremal Characters of the Infinite Symmetric Group. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 3-16. http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a1/
[1] E. Thoma, “Die unzerlegbaren, positive-definiten Klassenfunktionen der äbzahlbar unendlichen symmetrischen Gruppe”, Math. Z., 85 (1964), 40–61 | DOI | MR | Zbl
[2] V. Feray, P.-L. Méliot, Asymptotics of q-Plancherel measures, arXiv: 1001.2180
[3] P.-L. Méliot, A central limit theorem for the characters of the infinite symmetric group and of the infinite Hecke algebra, arXiv: 1105.0091
[4] A. M. Vershik, S. V. Kerov, “Asimptoticheskaya teoriya kharakterov simmetricheskoi gruppy”, Funkts. anal. i ego pril., 15:2 (1982), 15–27 | MR | Zbl
[5] S. Kerov, A. Okounkov, G. Olshanski, “The boundary of the Young graph with Jack edge multiplicities”, Internat. Math. Res. Notices, 1998:4, 173–199 | DOI | MR | Zbl
[6] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158:4 (2004), 551–642 | DOI | MR | Zbl
[7] S. V. Kerov, A. M. Vershik, “The characters of the infinite symmetric group and probability properties of the Robinson–Schensted–Knuth algorithm”, SIAM J. Algebraic Discrete Methods, 7:1 (1986), 116–124 | DOI | MR | Zbl
[8] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1984 | MR
[9] A. Regev, T. Seeman, “Shuffle-invariance of the super-RSK algorithm”, Adv. Appl. Math., 28:1 (2002), 59–81 | DOI | MR
[10] A. Berele, A. Regev, “Hook Young diagrams with applications to combinatorics and representations of Lie superalgebras”, Adv. in Math., 64:2 (1987), 118–175 | DOI | MR | Zbl
[11] W. Fulton, Young Tableaux, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[12] C. Schensted, “Longest increasing and decreasing subsequences”, Canad. J. Math., 13 (1961), 179–191 | DOI | MR | Zbl
[13] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1999 | MR | Zbl
[14] S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis, Translations of Math. Monographs, 219, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl
[15] K. Johansson, “Discrete orthogonal polynomial ensembles and the Plancherel measure”, Ann. of Math., 153:1 (2001), 259–296 | DOI | MR | Zbl