Systems of Correlation Functions, Coinvariants, and the Verlinde Algebra
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 49-64

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Gaberdiel–Goddard spaces of systems of correlation functions attached to affine Kac–Moody Lie algebras $\widehat{\mathfrak{g}}$. We prove that these spaces are isomorphic to spaces of coinvariants with respect to certain subalgebras of $\widehat{\mathfrak{g}}$. This allows us to describe the Gaberdiel–Goddard spaces as direct sums of tensor products of irreducible $\mathfrak{g}$-modules with multiplicities determined by the fusion coefficients. We thus reprove and generalize the Frenkel–Zhu theorem.
Mots-clés : affine Lie algebra
Keywords: vertex operator algebra, Zhu algebra.
@article{FAA_2012_46_1_a4,
     author = {E. B. Feigin},
     title = {Systems of {Correlation} {Functions,} {Coinvariants,} and the {Verlinde} {Algebra}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {49--64},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a4/}
}
TY  - JOUR
AU  - E. B. Feigin
TI  - Systems of Correlation Functions, Coinvariants, and the Verlinde Algebra
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 49
EP  - 64
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a4/
LA  - ru
ID  - FAA_2012_46_1_a4
ER  - 
%0 Journal Article
%A E. B. Feigin
%T Systems of Correlation Functions, Coinvariants, and the Verlinde Algebra
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 49-64
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a4/
%G ru
%F FAA_2012_46_1_a4
E. B. Feigin. Systems of Correlation Functions, Coinvariants, and the Verlinde Algebra. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 49-64. http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a4/