Systems of Correlation Functions, Coinvariants, and the Verlinde Algebra
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 49-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Gaberdiel–Goddard spaces of systems of correlation functions attached to affine Kac–Moody Lie algebras $\widehat{\mathfrak{g}}$. We prove that these spaces are isomorphic to spaces of coinvariants with respect to certain subalgebras of $\widehat{\mathfrak{g}}$. This allows us to describe the Gaberdiel–Goddard spaces as direct sums of tensor products of irreducible $\mathfrak{g}$-modules with multiplicities determined by the fusion coefficients. We thus reprove and generalize the Frenkel–Zhu theorem.
Mots-clés : affine Lie algebra
Keywords: vertex operator algebra, Zhu algebra.
@article{FAA_2012_46_1_a4,
     author = {E. B. Feigin},
     title = {Systems of {Correlation} {Functions,} {Coinvariants,} and the {Verlinde} {Algebra}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {49--64},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a4/}
}
TY  - JOUR
AU  - E. B. Feigin
TI  - Systems of Correlation Functions, Coinvariants, and the Verlinde Algebra
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 49
EP  - 64
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a4/
LA  - ru
ID  - FAA_2012_46_1_a4
ER  - 
%0 Journal Article
%A E. B. Feigin
%T Systems of Correlation Functions, Coinvariants, and the Verlinde Algebra
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 49-64
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a4/
%G ru
%F FAA_2012_46_1_a4
E. B. Feigin. Systems of Correlation Functions, Coinvariants, and the Verlinde Algebra. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 49-64. http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a4/

[1] D. Ben-Zvi, E. Frenkel, Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, 88, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[2] C. Dong, G. Mason, Integrability of $C_2$-cofinite vertex operator algebras, arXiv: math/0601569

[3] P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Springer-Verlag, New York, 1997 | MR | Zbl

[4] E. Feigin, “The PBW filtration”, Represent. Theory, 13 (2009), 165–181 | DOI | MR | Zbl

[5] B. Feigin, R. Kedem, S. Loktev, T. Miwa, E. Mukhin, “Combinatorics of the $\widehat{\mathfrak{sl}_2}$ spaces of coinvariants”, Transform. Groups, 6:1 (2001), 25–52 | DOI | MR | Zbl

[6] B. Feigin, E. Feigin, P. Littelmann, Zhu's algebras, $C_2$-algebras and abelian radicals, arXiv: 0907.3962

[7] E. Feigin, P. Littelmann, Zhu's algebra and the $C_2$-algebra in the symplectic and the orthogonal cases, arXiv: 0911.2957

[8] M. Finkelberg, “An equivalence of fusion categories”, Geom. Funct. Anal., 6:2 (1996), 249–267 | DOI | MR | Zbl

[9] I. Frenkel, Y. Zhu, “Vertex operator algebras associated to representations of affine and Virasoro algebras”, Duke Math. J., 66 (1992), 123–168 | DOI | MR | Zbl

[10] M. Gaberdiel, “An introduction to conformal field theory”, Rept. Prog. Phys., 63:4 (2000), 607–667 | DOI

[11] M. R. Gaberdiel, T. Gannon, Zhu's algebra, the $C_2$ algebra, and twisted modules, arXiv: 0811.3892

[12] M. R. Gaberdiel, P. Goddard, “Axiomatic conformal field theory”, Comm. Math. Phys., 209:3 (2000), 549–594 | DOI | MR | Zbl

[13] M. R. Gaberdiel, A. Neitzke, “Rationality, quasirationality and finite W-algebras”, Comm. Math. Phys., 238:1–2 (2003), 305–331 | DOI | MR | Zbl

[14] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR

[15] V. Kac, Vertex Algebras for Beginners, Univ. Lecture Series, 10, Amer. Math. Soc., Providence, RI, 1997 | MR

[16] A. Neitzke, Zhu's theorem and an algebraic characterization of conformal blocks, arXiv: hep-th/0005144

[17] A. Tsuchiya, K. Ueno, Y. Yamada, “Conformal field theory on the universal family of stable curves with gauge symmetry”, Adv. Stud. Pure Math., 19, 1989, 459–566 | DOI | MR | Zbl

[18] E. Verlinde, “Fusion rules and modular transformations in 2D conformal field theory”, Nucl. Phys. B, 300 (1988), 360–376 | DOI | MR | Zbl

[19] Y. Zhu, “Modular invariance of characters of vertex operator algebras”, J. Amer. Math. Soc., 9:1 (1996), 237–302 | DOI | MR | Zbl