Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2012_46_1_a4, author = {E. B. Feigin}, title = {Systems of {Correlation} {Functions,} {Coinvariants,} and the {Verlinde} {Algebra}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {49--64}, publisher = {mathdoc}, volume = {46}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a4/} }
E. B. Feigin. Systems of Correlation Functions, Coinvariants, and the Verlinde Algebra. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 49-64. http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a4/
[1] D. Ben-Zvi, E. Frenkel, Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, 88, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl
[2] C. Dong, G. Mason, Integrability of $C_2$-cofinite vertex operator algebras, arXiv: math/0601569
[3] P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Springer-Verlag, New York, 1997 | MR | Zbl
[4] E. Feigin, “The PBW filtration”, Represent. Theory, 13 (2009), 165–181 | DOI | MR | Zbl
[5] B. Feigin, R. Kedem, S. Loktev, T. Miwa, E. Mukhin, “Combinatorics of the $\widehat{\mathfrak{sl}_2}$ spaces of coinvariants”, Transform. Groups, 6:1 (2001), 25–52 | DOI | MR | Zbl
[6] B. Feigin, E. Feigin, P. Littelmann, Zhu's algebras, $C_2$-algebras and abelian radicals, arXiv: 0907.3962
[7] E. Feigin, P. Littelmann, Zhu's algebra and the $C_2$-algebra in the symplectic and the orthogonal cases, arXiv: 0911.2957
[8] M. Finkelberg, “An equivalence of fusion categories”, Geom. Funct. Anal., 6:2 (1996), 249–267 | DOI | MR | Zbl
[9] I. Frenkel, Y. Zhu, “Vertex operator algebras associated to representations of affine and Virasoro algebras”, Duke Math. J., 66 (1992), 123–168 | DOI | MR | Zbl
[10] M. Gaberdiel, “An introduction to conformal field theory”, Rept. Prog. Phys., 63:4 (2000), 607–667 | DOI
[11] M. R. Gaberdiel, T. Gannon, Zhu's algebra, the $C_2$ algebra, and twisted modules, arXiv: 0811.3892
[12] M. R. Gaberdiel, P. Goddard, “Axiomatic conformal field theory”, Comm. Math. Phys., 209:3 (2000), 549–594 | DOI | MR | Zbl
[13] M. R. Gaberdiel, A. Neitzke, “Rationality, quasirationality and finite W-algebras”, Comm. Math. Phys., 238:1–2 (2003), 305–331 | DOI | MR | Zbl
[14] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR
[15] V. Kac, Vertex Algebras for Beginners, Univ. Lecture Series, 10, Amer. Math. Soc., Providence, RI, 1997 | MR
[16] A. Neitzke, Zhu's theorem and an algebraic characterization of conformal blocks, arXiv: hep-th/0005144
[17] A. Tsuchiya, K. Ueno, Y. Yamada, “Conformal field theory on the universal family of stable curves with gauge symmetry”, Adv. Stud. Pure Math., 19, 1989, 459–566 | DOI | MR | Zbl
[18] E. Verlinde, “Fusion rules and modular transformations in 2D conformal field theory”, Nucl. Phys. B, 300 (1988), 360–376 | DOI | MR | Zbl
[19] Y. Zhu, “Modular invariance of characters of vertex operator algebras”, J. Amer. Math. Soc., 9:1 (1996), 237–302 | DOI | MR | Zbl