Resultants and Contour Integrals
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 39-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Resultants are important special functions used to describe nonlinear phenomena. The resultant $R_{r_1\dots r_n}$ determines a consistency condition for a system of $n$ homogeneous polynomials of degrees $r_1,\dots, r_n$ in $n$ variables in precisely the same way as the determinant does for a system of linear equations. Unfortunately, there is a lack of convenient formulas for resultants in the case of a large number of variables. In this paper we use Cauchy contour integrals to obtain a polynomial formula for resultants, which is expected to be useful in applications.
Mots-clés : rezultant, algebraic equation
Keywords: contour integral.
@article{FAA_2012_46_1_a3,
     author = {A. Yu. Morozov and Sh. R. Shakirov},
     title = {Resultants and {Contour} {Integrals}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {39--48},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a3/}
}
TY  - JOUR
AU  - A. Yu. Morozov
AU  - Sh. R. Shakirov
TI  - Resultants and Contour Integrals
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 39
EP  - 48
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a3/
LA  - ru
ID  - FAA_2012_46_1_a3
ER  - 
%0 Journal Article
%A A. Yu. Morozov
%A Sh. R. Shakirov
%T Resultants and Contour Integrals
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 39-48
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a3/
%G ru
%F FAA_2012_46_1_a3
A. Yu. Morozov; Sh. R. Shakirov. Resultants and Contour Integrals. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 39-48. http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a3/

[1] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhauser, Boston, MA, 1994 | MR | Zbl

[2] V. Dolotin, A. Morozov, Introduction to Non-Linear Algebra, World Scientific, Hackensack, NJ, 2007, arXiv: hep-th/0609022 | MR | Zbl

[3] A. Miyake, M. Wadati, “Multipartite entaglement and hyperdeterminants”, Quantum Inf. Comput., 2, Special (2002), 540–555, arXiv: quant-ph/0212146 | MR | Zbl

[4] M. Duff, String triality, black hole entropy and Cayley's hyperdeterminant, http://arxiv.org/abs/hep-th/0601134 | MR

[5] M. Duff, Hidden symmetries of the Nambu–Goto action, arXiv: hep-th/0602160

[6] R. Kallosh, A. Linde, “Strings, Black holes and quantum information”, Phys. Rev. D, 73:10 (2006), 104033, arXiv: hep-th/0602061 | DOI | MR

[7] S. Kachru, A. Klemm, W. Lerche, P. Mayr, C. Vafa, “Nonperturbative results on the point particle limit of $N=2$ heterotic string compactifications”, Nucl. Phys. B, 459:3 (1996), 537–555, arXiv: hep-th/9508155 | DOI | MR | Zbl

[8] T. Eguchi, Y. Tachikawa, “Rigid limit in $N=2$ supergravity and weak-gravity conjecture”, J. High Energy Phys., 2007:8, 068, arXiv: 0706.2114 | DOI | MR | Zbl

[9] P. Aspinwall, B. Greene, D. Morrison, “Measuring small distances in $N=2$ sigma models”, Nucl. Phys. B, 420:1–2 (1994), 184–242, arXiv: hep-th/9311042 | DOI | MR | Zbl

[10] A. Morozov, A. Niemi, “Can renormalization group flow end in a Big Mess?”, Nucl. Phys. B, 666:3 (2003), 311–336, arXiv: hep-th/0304178 | DOI | MR | Zbl

[11] V. Dolotin, A. Morozov, Algebraic geometry of discrete dynamics. The case of one variable, arXiv: hep-th/0501235

[12] And. Morozov, “Universal Mandelbrot set as a model of phase transition theory”, JETP Lett., 86 (2007), 745–748, arXiv: 0710.2315 | MR

[13] C. Andrea, A. Dickenstein, Explicit formulas for the multivariate resultant, arXiv: math/0007036

[14] M. Chardin, “Formules à la Macaulay pour les sous-résultants en plusieurs variables”, C. R. Acad. Sci. Paris, 319:5 (1994), 433–436 | MR | Zbl

[15] D. Manocha, J. Canny, “Multipolynomial resultant algorithms”, J. Symb. Comp., 15:5 (1993), 99–122 | DOI | MR | Zbl

[16] J. Canny, E. Kaltofen, L. Yagati, “Solving systems of non-linear equations faster”, Proc. Internat. Symp. Symbolic Algebraic Comput., ISSAC'89, ACM Press, New York, 1989, 121–128

[17] B. Gustafsson, V. Tkachev, “The resultant on compact Riemann surfaces”, Comm. Math. Phys., 286:1 (2009), 313–358, arXiv: 0710.2326 | DOI | MR | Zbl

[18] A. Morozov, Sh. Shakirov, “Analogue of the identity $\operatorname{Log}\operatorname{Det}=\operatorname{Trace}\operatorname{Log}$ for resultants”, J. Geom. Phys., 61:3 (2011), 708–726, arXiv: 0804.4632 | DOI | MR | Zbl

[19] A. K. Tsikh, Mnogomernye vychety i ikh primeneniya, Nauka, M., 1988 | MR | Zbl