Resultants and Contour Integrals
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 39-48
Voir la notice de l'article provenant de la source Math-Net.Ru
Resultants are important special functions used to describe nonlinear phenomena. The resultant $R_{r_1\dots r_n}$ determines a consistency condition for a system of $n$ homogeneous polynomials of degrees $r_1,\dots, r_n$ in $n$ variables in precisely the same way as the determinant does for a system of linear equations. Unfortunately, there is a lack of convenient formulas for resultants in the case of a large number of variables. In this paper we use Cauchy contour integrals to obtain a polynomial formula for resultants, which is expected to be useful in applications.
Mots-clés :
rezultant, algebraic equation
Keywords: contour integral.
Keywords: contour integral.
@article{FAA_2012_46_1_a3,
author = {A. Yu. Morozov and Sh. R. Shakirov},
title = {Resultants and {Contour} {Integrals}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {39--48},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a3/}
}
A. Yu. Morozov; Sh. R. Shakirov. Resultants and Contour Integrals. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 39-48. http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a3/