Relative Version of the Titchmarsh Convolution Theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 31-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the algebra $C_u=C_u(\mathbb{R})$ of uniformly continuous bounded complex functions on the real line $\mathbb{R}$ with pointwise operations and $\sup$-norm. Let $I$ be a closed ideal in $C_u$ invariant with respect to translations, and let $\operatorname{ah}_I(f)$ denote the minimal real number (if it exists) satisfying the following condition. If $\lambda>\operatorname{ah}_I(f)$, then $(\hat f - \hat g)|_V=0$ for some $g\in I$, where $V$ is a neighborhood of the point $\lambda$. The classical Titchmarsh convolution theorem is equivalent to the equality $\operatorname{ah}_I(f_1\cdot f_2)=\operatorname{ah}_I(f_1)+\operatorname{ah}_I(f_2)$, where $I = \{0\}$. We show that, for ideals $I$ of general form, this equality does not generally hold, but $\operatorname{ah}_I(f^n)=n\cdot\operatorname{ah}_I(f)$ holds for any $I$. We present many nontrivial ideals for which the general form of the Titchmarsh theorem is true.
Keywords: Titchmarsh's convolution theorem, estimation of entire functions, Banach algebra.
@article{FAA_2012_46_1_a2,
     author = {E. A. Gorin and D. V. Treschev},
     title = {Relative {Version} of the {Titchmarsh} {Convolution} {Theorem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {31--38},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a2/}
}
TY  - JOUR
AU  - E. A. Gorin
AU  - D. V. Treschev
TI  - Relative Version of the Titchmarsh Convolution Theorem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 31
EP  - 38
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a2/
LA  - ru
ID  - FAA_2012_46_1_a2
ER  - 
%0 Journal Article
%A E. A. Gorin
%A D. V. Treschev
%T Relative Version of the Titchmarsh Convolution Theorem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 31-38
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a2/
%G ru
%F FAA_2012_46_1_a2
E. A. Gorin; D. V. Treschev. Relative Version of the Titchmarsh Convolution Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 31-38. http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a2/

[1] D. V. Treschev, “Oscillator and thermostat”, Discrete Contin. Dyn. Syst. (DCDS–A), 28:4 (2010), 1693–1712, arXiv: 0912.1186 | DOI | MR | Zbl

[2] B. Ya. Levin, Lectures on Entier Functions, Translations of Math. Monographs, 150, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl

[3] N. Burbaki, Spektralnaya teoriya, Mir, M., 1972 | MR

[4] E. A. Gorin, “Ob issledovaniyakh G. E. Shilova po teorii kommutativnykh banakhovykh algebr i ikh dalneishem razvitii”, UMN, 33:4 (1978), 169–188 | MR | Zbl

[5] L. Khërmander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, t. 1. Teoriya raspredelenii i analiz Fure, Mir, M., 1986

[6] J. L. Lions, “Supports de produits de compositions”, C.R. Acad. Sci., 232 (1951), 1530–1532 | MR | Zbl

[7] J. L. Lions, “Supports de produits de compositions. I”, C.R. Acad. Sci., 232 (1951), 1622–1624 | MR | Zbl

[8] J. L. Lions, “Supports dans la transfomations de Laplace. II”, J. Anal. Math., 2 (1953), 369–380 | DOI | MR | Zbl

[9] L. Khërmander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, t. 2. Differentsialnye operatory s postoyannymi koeffitsientami, Mir, M., 1986

[10] B. Weiss, “Titcmarsh's convolutions theorem on groups”, Proc. Amer. Math. Soc., 19 (1968), 75–79 | MR | Zbl

[11] Y. Domar, “Convolutions theorem of Titchmarsh type on discrete $\mathbf{R}^n$”, Proc. Edinburgh Math. Soc., 32:3 (1989), 449–457 | DOI | MR | Zbl