Relative Version of the Titchmarsh Convolution Theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 31-38

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the algebra $C_u=C_u(\mathbb{R})$ of uniformly continuous bounded complex functions on the real line $\mathbb{R}$ with pointwise operations and $\sup$-norm. Let $I$ be a closed ideal in $C_u$ invariant with respect to translations, and let $\operatorname{ah}_I(f)$ denote the minimal real number (if it exists) satisfying the following condition. If $\lambda>\operatorname{ah}_I(f)$, then $(\hat f - \hat g)|_V=0$ for some $g\in I$, where $V$ is a neighborhood of the point $\lambda$. The classical Titchmarsh convolution theorem is equivalent to the equality $\operatorname{ah}_I(f_1\cdot f_2)=\operatorname{ah}_I(f_1)+\operatorname{ah}_I(f_2)$, where $I = \{0\}$. We show that, for ideals $I$ of general form, this equality does not generally hold, but $\operatorname{ah}_I(f^n)=n\cdot\operatorname{ah}_I(f)$ holds for any $I$. We present many nontrivial ideals for which the general form of the Titchmarsh theorem is true.
Keywords: Titchmarsh's convolution theorem, estimation of entire functions, Banach algebra.
@article{FAA_2012_46_1_a2,
     author = {E. A. Gorin and D. V. Treschev},
     title = {Relative {Version} of the {Titchmarsh} {Convolution} {Theorem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {31--38},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a2/}
}
TY  - JOUR
AU  - E. A. Gorin
AU  - D. V. Treschev
TI  - Relative Version of the Titchmarsh Convolution Theorem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 31
EP  - 38
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a2/
LA  - ru
ID  - FAA_2012_46_1_a2
ER  - 
%0 Journal Article
%A E. A. Gorin
%A D. V. Treschev
%T Relative Version of the Titchmarsh Convolution Theorem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 31-38
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a2/
%G ru
%F FAA_2012_46_1_a2
E. A. Gorin; D. V. Treschev. Relative Version of the Titchmarsh Convolution Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 31-38. http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a2/