Rotation Numbers and Moduli of Elliptic Curves
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 13-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a circle diffeomorphism $f$, we can construct a map taking each real number $a$ to the rotation number of the diffeomorphism $f+a$. In 1978, V. I. Arnold suggested a complex analog To this map. Given a complex number $z$ with $\operatorname{Im}z>0$, Arnold used the map $f+z$ to construct an elliptic curve. The moduli map takes every number $z$ to the modulus $\mu(z)$ of this elliptic curve. In this article, we investigate the limit behaviour of the map $\mu$ in neighborhoods of the real intervals on which the rotation number of the diffeomorphism $f+a$ is rational. We show that the map $\mu$ extends analytically to any interior point of such an interval, excluding some finite set of exceptional points. Near exceptional points and the endpoints of the interval, the values of the function $\mu$ tend to the rotation number of the map $f+a$. The union of the images of such intervals under the map $\mu$ is a fractal set in the upper half-plane. This fractal set is a complex analog to Arnold tongues.
Keywords: circle diffeomorphism, rotation number, elliptic curve
Mots-clés : quasiconformal map.
@article{FAA_2012_46_1_a1,
     author = {N. B. Goncharuk},
     title = {Rotation {Numbers} and {Moduli} of {Elliptic} {Curves}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {13--30},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a1/}
}
TY  - JOUR
AU  - N. B. Goncharuk
TI  - Rotation Numbers and Moduli of Elliptic Curves
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 13
EP  - 30
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a1/
LA  - ru
ID  - FAA_2012_46_1_a1
ER  - 
%0 Journal Article
%A N. B. Goncharuk
%T Rotation Numbers and Moduli of Elliptic Curves
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 13-30
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a1/
%G ru
%F FAA_2012_46_1_a1
N. B. Goncharuk. Rotation Numbers and Moduli of Elliptic Curves. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 13-30. http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a1/

[1] L. Alfors, Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR

[2] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[3] V. S. Moldavskii, “Moduli ellipticheskikh krivykh i chisla vrascheniya diffeomorfizmov okruzhnosti”, Funkts. analiz i ego pril., 35:3 (2001), 88–91 | DOI | MR

[4] Y. Ilyashenko, V. Moldavskii, “Morse–Smale circle diffeomorphisms and moduli of elliptic curves”, Mosc. Math. J., 3:2 (2003), 531–540 | DOI | MR | Zbl

[5] Y. Ilyashenko, S. Yakovenko, Lectures on Analytic Differential Equations, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[6] E. Risler, “Linéarisation des perturbations holomorphes des rotations et applications”, Mém. Soc. Math. France $2^e$ série, 77 (1999) | MR | Zbl

[7] F. Takens, “Normal forms for certain singularities of vectorfields”, Ann. Inst. Fourier, 23:2 (1973), 163–195 | DOI | MR | Zbl

[8] J.-C. Yoccoz, “Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne”, Ann. Sci. École Norm. Sup. (4), 17:3 (1984), 333–359 | DOI | MR | Zbl

[9] G. Koenigs, “Recherches sur les intégrales de certaines équations fonctionnelles”, Ann. Sci. École Norm. Sup. (3), 1 (1884), 3–41 | DOI | MR | Zbl

[10] E. Schröder, “Über unendlich viele Algorithmen zur Auflosung der Gleichungen”, Math. Ann., 2:2 (1870), 317–365 | DOI | MR

[11] E. Schröder, “Über iterierte Funktionen”, Math. Ann., 3 (1871), 296–322 | DOI