Intersection theory and Hilbert function
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 4, pp. 82-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Birationally invariant intersection theory is a far-reaching generalization and extension of the Bernstein–Kushnirenko theorem. This paper presents transparent proofs of Hilbert's theorem on the degree of a projective variety and other related statements playing an important role in this theory. The paper is completely self-contained; we recall all necessary definitions and statements.
Keywords: degree of projective variety, Hilbert function, intersection theory, Bernstein–Kushnirenko theorem.
@article{FAA_2011_45_4_a7,
     author = {A. G. Khovanskii},
     title = {Intersection theory and {Hilbert} function},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {82--94},
     publisher = {mathdoc},
     volume = {45},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a7/}
}
TY  - JOUR
AU  - A. G. Khovanskii
TI  - Intersection theory and Hilbert function
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 82
EP  - 94
VL  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a7/
LA  - ru
ID  - FAA_2011_45_4_a7
ER  - 
%0 Journal Article
%A A. G. Khovanskii
%T Intersection theory and Hilbert function
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 82-94
%V 45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a7/
%G ru
%F FAA_2011_45_4_a7
A. G. Khovanskii. Intersection theory and Hilbert function. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 4, pp. 82-94. http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a7/

[1] A. G. Khovanskii, “Mnogogrannik Nyutona, polinom Gilberta i summy konechnykh mnozhestv”, Funkts. analiz i ego pril., 26:4 (1992), 57–63 | MR

[2] V. A. Timorin, A. G. Khovanskii, “Mnogogranniki i uravneniya”, Matematicheskoe prosveschenie, ser. 3, 14, 2010, 30–57

[3] A. G. Khovanskii, “Mnogogranniki Nyutona i toricheskie mnogoobraziya”, Funkts. analiz i ego pril., 11:4 (1977), 56–64 | MR

[4] A. G. Khovanskii, “Mnogogranniki Nyutona i rod polnykh peresechenii”, Funkts. analiz i ego pril., 12:1 (1978), 51–61 | MR | Zbl

[5] K. Kaveh, A. G. Khovanskii, Convex bodies and algebraic equations on affine varieties, arXiv: 0804.4095v1

[6] R. Lazarsfeld, M. Mustata, “Convex bodies associated to linear series”, Ann. Sci. Ec. Norm., 42:5 (2009), 783–835 | MR | Zbl

[7] K. Kaveh, A. G. Khovanskii, “Mixed volume and an extension of intersection theory of divisors”, Mosc. Math. J., 10:2 (2010), 343–375 | DOI | MR | Zbl

[8] K. Kaveh, A. G. Khovanskii, Newton–Okounkov convex bodies, semigroups of integral points, graded algebras and intersection theory, arXiv: 0904.3350v1

[9] K. Kaveh, A. G. Khovanskii, “Newton polytopes for horospherical spaces”, Mosc. Math. J., 11:2 (2011), 265–283 | MR

[10] K. Kaveh, A. G. Khovanskii, “Moment polytopes, semigroup of representations and Kazarnovskii's theorem”, J. Fixed Point Theory Appl., 7:2 (2010), 401–417 | DOI | MR | Zbl

[11] K. Kaveh, A. G. Khovanskii, Convex bodies associated to actions of reductive groups, arXiv: 1001.4830

[12] O. Zarisskii, P. Samyuel, Kommutativnaya algebra, v. 2, IL, M., 1963, dop. 4