Sphericity and multiplication of double cosets for infinite-dimensional classical groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 3, pp. 79-96

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct spherical subgroups in infinite-dimensional classical groups $G$ (usually they are not symmetric and their finite-dimensional analogs are not spherical). We present a structure of a semigroup on double cosets $L\setminus G/L$ for various subgroups $L$ in $G$; these semigroups act in spaces of $L$-fixed vectors in unitary representations of $G$. We also obtain semigroup envelops of groups $G$ generalizing constructions of operator colligations.
Keywords: spherical subgroup, spherical function, unitary representation, operator colligation, characteristic function (transfer function), category representation, inner function.
@article{FAA_2011_45_3_a6,
     author = {Yu. A. Neretin},
     title = {Sphericity and multiplication of double cosets for infinite-dimensional classical groups},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {79--96},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a6/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Sphericity and multiplication of double cosets for infinite-dimensional classical groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 79
EP  - 96
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a6/
LA  - ru
ID  - FAA_2011_45_3_a6
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Sphericity and multiplication of double cosets for infinite-dimensional classical groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 79-96
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a6/
%G ru
%F FAA_2011_45_3_a6
Yu. A. Neretin. Sphericity and multiplication of double cosets for infinite-dimensional classical groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 3, pp. 79-96. http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a6/