Sphericity and multiplication of double cosets for infinite-dimensional classical groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 3, pp. 79-96
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct spherical subgroups in infinite-dimensional classical groups $G$ (usually they are not symmetric and their finite-dimensional analogs are not spherical). We present a structure of a semigroup on double cosets $L\setminus G/L$ for various subgroups $L$ in $G$; these semigroups act in spaces of $L$-fixed vectors in unitary representations of $G$. We also obtain semigroup envelops of groups $G$ generalizing constructions of operator colligations.
Keywords:
spherical subgroup, spherical function, unitary representation, operator colligation, characteristic function (transfer function), category representation, inner function.
@article{FAA_2011_45_3_a6,
author = {Yu. A. Neretin},
title = {Sphericity and multiplication of double cosets for infinite-dimensional classical groups},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {79--96},
publisher = {mathdoc},
volume = {45},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a6/}
}
TY - JOUR AU - Yu. A. Neretin TI - Sphericity and multiplication of double cosets for infinite-dimensional classical groups JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2011 SP - 79 EP - 96 VL - 45 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a6/ LA - ru ID - FAA_2011_45_3_a6 ER -
Yu. A. Neretin. Sphericity and multiplication of double cosets for infinite-dimensional classical groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 3, pp. 79-96. http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a6/