On macroscopic dimension of rationally inessential manifolds
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 3, pp. 34-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that, for a rationally inessential orientable closed $n$-manifold $M$ whose fundamental group is a duality group, the macroscopic dimension of its universal cover $\widetilde{M}$ is strictly less than $n$: $\dim_{MC}\widetilde{M}$. As a corollary, we obtain the following partial result towards Gromov's conjecture: \textit{The inequality $\dim_{MC}\widetilde{M}$ holds for the universal cover $\widetilde{M}$ of a closed spin $n$-manifold $M$ with a positive scalar curvature metric if the fundamental group $\pi_1(M)$ is a duality group satisfying the analytic Novikov conjecture.}
Keywords: macroscopic dimension, inessential manifold, duality group.
@article{FAA_2011_45_3_a3,
     author = {A. N. Dranishnikov},
     title = {On macroscopic dimension of rationally inessential manifolds},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {34--40},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a3/}
}
TY  - JOUR
AU  - A. N. Dranishnikov
TI  - On macroscopic dimension of rationally inessential manifolds
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 34
EP  - 40
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a3/
LA  - ru
ID  - FAA_2011_45_3_a3
ER  - 
%0 Journal Article
%A A. N. Dranishnikov
%T On macroscopic dimension of rationally inessential manifolds
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 34-40
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a3/
%G ru
%F FAA_2011_45_3_a3
A. N. Dranishnikov. On macroscopic dimension of rationally inessential manifolds. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 3, pp. 34-40. http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a3/

[1] V. I. Arnold, “Dynamics of complexity of intersections”, Bol. Soc. Brasil. Mat. (N.S.), 21:1 (1990), 1–10 | DOI | MR | Zbl

[2] D. Bolotov, “Macroscopic dimension of 3-manifolds”, Math. Phys. Anal. Geom., 6 (2003), 291–299 | DOI | MR | Zbl

[3] D. Bolotov, A. Dranishnikov, “On Gromov's scalar curvature conjecture”, Proc. Amer. Math. Soc., 138:4 (2010), 1517–1524 | DOI | MR | Zbl

[4] S. Brendle, R. Schoen, “Sphere theorems in geometry”, Surv. Differential Geometry, v. XIII, Intern. Press, Somerville, MA, 2009, 49–84 | MR | Zbl

[5] K. Brown, Cohomology of Groups, Springer-Verlag, New York–Berlin, 1982 | MR

[6] J. Cheeger, “Finiteness theorem of Riemannian manifolds”, Amer. J. Math., 92 (1970), 61–74 | DOI | MR | Zbl

[7] A. Dranishnikov, “Infinite family of manifolds with bounded total curvature”, Proc. Amer. Math. Soc., 128:1 (2000), 255–260 | DOI | MR | Zbl

[8] A. N. Dranishnikov, “Macroscopic dimension and essential manifolds”, Trudy MIRAN, 273, 2011, 41–53 | MR | Zbl

[9] A. Dranishnikov, “On macroscopic dimension of rationally essential manifolds”, Geometry and Topology (to appear) | MR

[10] M. Gromov, Metric Structures for Riemannian and non-Riemannian Spaces, Birkhäuser, Boston, MA, 1999 | MR | Zbl

[11] M. Gromov, “Positive Curvature, Macroscopic Dimension, Spectral Gaps and Higher Signatures”, Functional analysis on the eve of the 21st century, v. II, Birkhäuser, Boston, MA, 1996, 1–213 | MR | Zbl

[12] M. Gromov, H. B. Lawson, Jr., “The classification of simply connected manifolds of positive scalar curvature”, Ann. of Math., 111 (1980), 209–230 | DOI | MR | Zbl

[13] M. Gromov, H. B. Lawson, Jr., “Positive scalar curvature and the Dirac operator on complete Riemannian manifolds”, Publ. Math. I.H.E.S., 58 (1983), 83–196 | DOI | MR | Zbl

[14] N. Hitchin, “Harmonic spinors”, Adv. Math., 14 (1974), 1–55 | DOI | MR | Zbl

[15] A. Lichnerowicz, “Spineurs harmoniques”, C. R. Acad. Sci. Paris, Ser. A-B, 257 (1963), 7–9 | MR | Zbl

[16] J. Rosenberg, “$C^*$-algebras, positive scalar curvature, and the Novikov conjecture, III”, Topology, 25:3 (1986), 319–336 | DOI | MR | Zbl

[17] J. Rosenberg, S. Stolz, “Metrics of positive scalar curvature and connections with surgery”, Surveys on Surgery Theory, v. 2, Ann. Math. Stud., 149, Princeton Univ. Press, Princeton. NJ, 2001, 353–386 | MR | Zbl

[18] Yu. Rudyak, On Thom Spectra, Orientability, and Cobordism, Springer-Verlag, Berlin, 1998 | MR | Zbl

[19] T. Schick, “Counterexample to the (unstable) Gromov–Lawson–Rosenberg conjecture”, Topology, 37:6 (1998), 1165–1168 | DOI | MR | Zbl

[20] S. Stolz, “Simply connected manifolds of positive scalar curvature”, Ann. of Math., 136:3 (1992), 511–540 | DOI | MR | Zbl