Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2011_45_3_a3, author = {A. N. Dranishnikov}, title = {On macroscopic dimension of rationally inessential manifolds}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {34--40}, publisher = {mathdoc}, volume = {45}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a3/} }
A. N. Dranishnikov. On macroscopic dimension of rationally inessential manifolds. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 3, pp. 34-40. http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a3/
[1] V. I. Arnold, “Dynamics of complexity of intersections”, Bol. Soc. Brasil. Mat. (N.S.), 21:1 (1990), 1–10 | DOI | MR | Zbl
[2] D. Bolotov, “Macroscopic dimension of 3-manifolds”, Math. Phys. Anal. Geom., 6 (2003), 291–299 | DOI | MR | Zbl
[3] D. Bolotov, A. Dranishnikov, “On Gromov's scalar curvature conjecture”, Proc. Amer. Math. Soc., 138:4 (2010), 1517–1524 | DOI | MR | Zbl
[4] S. Brendle, R. Schoen, “Sphere theorems in geometry”, Surv. Differential Geometry, v. XIII, Intern. Press, Somerville, MA, 2009, 49–84 | MR | Zbl
[5] K. Brown, Cohomology of Groups, Springer-Verlag, New York–Berlin, 1982 | MR
[6] J. Cheeger, “Finiteness theorem of Riemannian manifolds”, Amer. J. Math., 92 (1970), 61–74 | DOI | MR | Zbl
[7] A. Dranishnikov, “Infinite family of manifolds with bounded total curvature”, Proc. Amer. Math. Soc., 128:1 (2000), 255–260 | DOI | MR | Zbl
[8] A. N. Dranishnikov, “Macroscopic dimension and essential manifolds”, Trudy MIRAN, 273, 2011, 41–53 | MR | Zbl
[9] A. Dranishnikov, “On macroscopic dimension of rationally essential manifolds”, Geometry and Topology (to appear) | MR
[10] M. Gromov, Metric Structures for Riemannian and non-Riemannian Spaces, Birkhäuser, Boston, MA, 1999 | MR | Zbl
[11] M. Gromov, “Positive Curvature, Macroscopic Dimension, Spectral Gaps and Higher Signatures”, Functional analysis on the eve of the 21st century, v. II, Birkhäuser, Boston, MA, 1996, 1–213 | MR | Zbl
[12] M. Gromov, H. B. Lawson, Jr., “The classification of simply connected manifolds of positive scalar curvature”, Ann. of Math., 111 (1980), 209–230 | DOI | MR | Zbl
[13] M. Gromov, H. B. Lawson, Jr., “Positive scalar curvature and the Dirac operator on complete Riemannian manifolds”, Publ. Math. I.H.E.S., 58 (1983), 83–196 | DOI | MR | Zbl
[14] N. Hitchin, “Harmonic spinors”, Adv. Math., 14 (1974), 1–55 | DOI | MR | Zbl
[15] A. Lichnerowicz, “Spineurs harmoniques”, C. R. Acad. Sci. Paris, Ser. A-B, 257 (1963), 7–9 | MR | Zbl
[16] J. Rosenberg, “$C^*$-algebras, positive scalar curvature, and the Novikov conjecture, III”, Topology, 25:3 (1986), 319–336 | DOI | MR | Zbl
[17] J. Rosenberg, S. Stolz, “Metrics of positive scalar curvature and connections with surgery”, Surveys on Surgery Theory, v. 2, Ann. Math. Stud., 149, Princeton Univ. Press, Princeton. NJ, 2001, 353–386 | MR | Zbl
[18] Yu. Rudyak, On Thom Spectra, Orientability, and Cobordism, Springer-Verlag, Berlin, 1998 | MR | Zbl
[19] T. Schick, “Counterexample to the (unstable) Gromov–Lawson–Rosenberg conjecture”, Topology, 37:6 (1998), 1165–1168 | DOI | MR | Zbl
[20] S. Stolz, “Simply connected manifolds of positive scalar curvature”, Ann. of Math., 136:3 (1992), 511–540 | DOI | MR | Zbl