The Pascal automorphism has a~continuous spectrum
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 3, pp. 16-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we describe the Pascal automorphism and present a sketch of the proof that its spectrum is continuous on the orthogonal complement of the constants.
Mots-clés : Pascal automotphism
Keywords: continuous spectrum, entropy.
@article{FAA_2011_45_3_a2,
     author = {A. M. Vershik},
     title = {The {Pascal} automorphism has a~continuous spectrum},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {16--33},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a2/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - The Pascal automorphism has a~continuous spectrum
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 16
EP  - 33
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a2/
LA  - ru
ID  - FAA_2011_45_3_a2
ER  - 
%0 Journal Article
%A A. M. Vershik
%T The Pascal automorphism has a~continuous spectrum
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 16-33
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a2/
%G ru
%F FAA_2011_45_3_a2
A. M. Vershik. The Pascal automorphism has a~continuous spectrum. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 3, pp. 16-33. http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a2/

[1] V. I. Arnold, Eksperimentalnoe nablyudenie matematicheskikh faktov, MTsNMO, M., 2006 | MR

[2] V. Arnold, “Statistics of the symmetric group representations as a natural science question on asymptotic of Young diagrams”, Representation Theory, Dynamical Systems, and Asymptotic Combinatorics, Amer. Math. Soc. Transl. Ser. 2, 217, 2006, 1–8 | MR | Zbl

[3] A. M. Vershik, “Ravnomernaya algebraicheskaya approksimatsiya operatorov sdviga i umnozheniya”, DAN SSSR, 259:3 (1981), 526–529 | MR | Zbl

[4] A. Vershik, “Teorema o periodicheskoi markovskoi approksimatsii v ergodicheskoi teorii”, Zap. nauchn. sem. LOMI, 115, 1982, 72–82 | MR | Zbl

[5] A. Vershik, “Dynamics of metrics in measure spaces and their asymptotic invariants”, Markov Processes Related Fields, 16:1 (2010), 169–185 | MR

[6] A. M. Vershik, “Masshtabirovannaya entropiya i avtomorfizmy s chisto tochechnym spektrom”, Algebra i analiz, 23:1 (2011), 111–135 | MR

[7] A. Hajan, Y. Ito, S. Kakutani, “Invariant measure and orbits of dissipative transformations”, Adv. in Math., 9:1 (1972), 52–65 | DOI | MR

[8] S. Kakutani, “A problem of equidistribution on the unit interval $[0,1]$”, Lecture Notes in Math., 541, Springer-Verlag, Berlin, 1976, 369–375 | DOI | MR

[9] A. Kushnirenko, “O metricheskikh invariantakh tipa entropii”, UMN, 22:5(137) (1967), 57–65 | MR | Zbl

[10] A. A. Lodkin, I. E. Manaev, A. R. Minabutdinov, “Asimptotika masshtabirovannoi entropii avtomorfizma Paskalya”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. 18, Zap. nauchn. sem. POMI, 378, 2010, 58–72 | MR

[11] A. Vershik, “Orbit theory, locally finite permutations and Morse arithmetic”, Dynamical Numbers: Interplay between Dynamical Systems and Number Theory, Contemp. Math., 532, 2010, 115–136 | DOI | MR | Zbl

[12] A. Vershik, S. Kerov, “Lokalno poluprostye algebry. Kombinatornaya teoriya i $K_0$-funktor”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 26, VINITI, M., 1985, 3–56 | MR

[13] An. A. Muchnik, Yu. L. Pritykin, A. L. Semenov, “Posledovatelnosti, blizkie k periodicheskim”, UMN, 64:5(389) (2009), 21–96 | DOI | MR | Zbl

[14] K. Petersen, K. Schmidt, “Symmetric Gibbs measures”, Trans. Amer. Math. Soc., 349:7 (1997), 2775–2811 | DOI | MR | Zbl

[15] S. Ferenczi, “Measure-theoretic complexity of ergodic systems”, Israel Math. J., 100 (1997), 180–207 | DOI | MR

[16] X. Mela, Dynamical properties of the Pascal adic and related systems, PhD Thesis, Univ. North Carolina at Chapel Hill, 2002 | MR | Zbl

[17] É. Janvresse, T. de la Rue, “The Pascal adic transformation is loosely Bernoulli”, Ann. Inst. H. Poincaré (B), Prob. Statist., 40:2 (2004), 133–139 | DOI | MR | Zbl

[18] X. Mela, K. Petersen, “Dynamical properties of the Pascal adic transformation”, Ergodic Theory Dynam. Systems, 25:1 (2005), 227–256 | DOI | MR | Zbl

[19] É. Janvresse, T. de la Rue, Y. Velenik, “Self-similar corrections to the ergodic theorem for the Pascal-adic transformation”, Stoch. Dyn., 5:1 (2005), 1–25 | DOI | MR | Zbl