A Criterion for the Unconditional Basis Property of Eigenvectors for Finite-Rank Perturbations of Volterra Operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 2, pp. 86-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for the unconditional basis property of eigenvectors for finite-rank perturbations of Volterra operators is given. Considerations are based on functional models for non-self-adjoint operators and on the technique of the Muckenhoupt matrix weights.
Keywords: unconditional basis, non-self-adjoint operators, entire inner matrix functions, Muckenhoupt matrix weights.
@article{FAA_2011_45_2_a5,
     author = {G. M. Gubreev and A. A. Tarasenko},
     title = {A {Criterion} for the {Unconditional} {Basis} {Property} of {Eigenvectors} for {Finite-Rank} {Perturbations} of {Volterra} {Operators}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {86--91},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a5/}
}
TY  - JOUR
AU  - G. M. Gubreev
AU  - A. A. Tarasenko
TI  - A Criterion for the Unconditional Basis Property of Eigenvectors for Finite-Rank Perturbations of Volterra Operators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 86
EP  - 91
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a5/
LA  - ru
ID  - FAA_2011_45_2_a5
ER  - 
%0 Journal Article
%A G. M. Gubreev
%A A. A. Tarasenko
%T A Criterion for the Unconditional Basis Property of Eigenvectors for Finite-Rank Perturbations of Volterra Operators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 86-91
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a5/
%G ru
%F FAA_2011_45_2_a5
G. M. Gubreev; A. A. Tarasenko. A Criterion for the Unconditional Basis Property of Eigenvectors for Finite-Rank Perturbations of Volterra Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 2, pp. 86-91. http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a5/

[1] G. M. Gubreev, Yu. D. Latushkin, Funkts. analiz i ego pril., 42:3 (2008), 85–89 | DOI | MR | Zbl

[2] S. Treil, A. Volberg, J. Funct. Anal., 143:2 (1997), 269–308 | DOI | MR | Zbl

[3] M. S. Brodskii, Treugolnye i zhordanovy predstavleniya lineinykh operatorov, Nauka, M., 1969 | MR

[4] B. Sekefalvi-Nad, Ch. Foyash, Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[5] D. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[6] N. K. Nikolskii, Teoriya operatorov v funktsionalnykh prostranstvakh, Nauka, Novosibirsk, 1977, 240–282

[7] S. R. Treil, DAN SSSR, 288:2 (1986), 308–312 | MR | Zbl

[8] N. K. Nikolskii, B. S. Pavlov, Izv. AN SSSR, 34:1 (1970), 90–133 | MR

[9] B. S. Pavlov, DAN SSSR, 247:1 (1979), 37–40 | MR | Zbl

[10] S. A. Avdonin, S. A. Ivanov, Families of Exponentials, Cambridge Univ. Press, 1995 | MR | Zbl

[11] M. M. Dzhrbashyan, Izv. AN Arm. SSR, 5:2 (1970), 71–96 | MR | Zbl