On the Fundamental Group of the Complement of a Complex Hyperplane Arrangement
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 2, pp. 71-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct two combinatorially equivalent line arrangements in the complex projective plane such that the fundamental groups of their complements are not isomorphic. The proof uses a new invariant of the fundamental group of the complement to a line arrangement of a given combinatorial type with respect to isomorphisms inducing the canonical isomorphism of the first homology groups.
Keywords: hyperplane arrangement, matroid, homology groups, fundamental group, lower central series.
@article{FAA_2011_45_2_a4,
     author = {G. L. Rybnikov},
     title = {On the {Fundamental} {Group} of the {Complement} of a {Complex} {Hyperplane} {Arrangement}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {71--85},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a4/}
}
TY  - JOUR
AU  - G. L. Rybnikov
TI  - On the Fundamental Group of the Complement of a Complex Hyperplane Arrangement
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 71
EP  - 85
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a4/
LA  - ru
ID  - FAA_2011_45_2_a4
ER  - 
%0 Journal Article
%A G. L. Rybnikov
%T On the Fundamental Group of the Complement of a Complex Hyperplane Arrangement
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 71-85
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a4/
%G ru
%F FAA_2011_45_2_a4
G. L. Rybnikov. On the Fundamental Group of the Complement of a Complex Hyperplane Arrangement. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 2, pp. 71-85. http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a4/

[1] W. Arvola, “The fundamental group of the complement of an arrangement of complex hyperplanes”, Topology, 31:4 (1992), 757–765 | DOI | MR | Zbl

[2] E. Artal Bartolo, J. Carmona Ruber, J. I. Cogolludo Agustín, M. A. Marco Buzunáriz, “Invariants of combinatorial line arrangements and Rybnikov's example”, Singularity Theory and its Applications, Adv. Studies in Pure Math., 43, Math. Soc. Japan, Tokyo, 2006, 1–34 | MR | Zbl

[3] T. Kohno, “On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces”, Nagoya Math. J., 92 (1983), 21–37 | DOI | MR | Zbl

[4] S. MacLane, “Some interpretations of abstract linear dependence in terms of projective geometry”, Amer. J. Math., 58:1 (1936), 236–241 | DOI | MR

[5] V. Magnus, A. Karras, D. Soliter, Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR | Zbl

[6] P. Orlik, L. Solomon, “Combinatorics and topology of complements of hyperplanes”, Invent. Math., 56:2 (1980), 167–189 | DOI | MR | Zbl

[7] P. Orlik, H. Terao, Arrangements of Hyperplanes, Springer-Verlag, Berlin etc., 1992 | MR | Zbl

[8] G. Rybnikov, On the fundamental group of the complement of a complex hyperplane arrangement, DIMACS Tech. Report 94-13 (1994), 33–50

[9] D. J. A. Welsh, Matroid Theory, Academic Press, London–New York, 1976 | MR | Zbl

[10] G. M. Ziegler, “Matroid representations and free arrangements”, Trans. Amer. Math. Soc., 320:2 (1990), 525–541 | DOI | MR | Zbl