Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2011_45_2_a4, author = {G. L. Rybnikov}, title = {On the {Fundamental} {Group} of the {Complement} of a {Complex} {Hyperplane} {Arrangement}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {71--85}, publisher = {mathdoc}, volume = {45}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a4/} }
TY - JOUR AU - G. L. Rybnikov TI - On the Fundamental Group of the Complement of a Complex Hyperplane Arrangement JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2011 SP - 71 EP - 85 VL - 45 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a4/ LA - ru ID - FAA_2011_45_2_a4 ER -
G. L. Rybnikov. On the Fundamental Group of the Complement of a Complex Hyperplane Arrangement. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 2, pp. 71-85. http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a4/
[1] W. Arvola, “The fundamental group of the complement of an arrangement of complex hyperplanes”, Topology, 31:4 (1992), 757–765 | DOI | MR | Zbl
[2] E. Artal Bartolo, J. Carmona Ruber, J. I. Cogolludo Agustín, M. A. Marco Buzunáriz, “Invariants of combinatorial line arrangements and Rybnikov's example”, Singularity Theory and its Applications, Adv. Studies in Pure Math., 43, Math. Soc. Japan, Tokyo, 2006, 1–34 | MR | Zbl
[3] T. Kohno, “On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces”, Nagoya Math. J., 92 (1983), 21–37 | DOI | MR | Zbl
[4] S. MacLane, “Some interpretations of abstract linear dependence in terms of projective geometry”, Amer. J. Math., 58:1 (1936), 236–241 | DOI | MR
[5] V. Magnus, A. Karras, D. Soliter, Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR | Zbl
[6] P. Orlik, L. Solomon, “Combinatorics and topology of complements of hyperplanes”, Invent. Math., 56:2 (1980), 167–189 | DOI | MR | Zbl
[7] P. Orlik, H. Terao, Arrangements of Hyperplanes, Springer-Verlag, Berlin etc., 1992 | MR | Zbl
[8] G. Rybnikov, On the fundamental group of the complement of a complex hyperplane arrangement, DIMACS Tech. Report 94-13 (1994), 33–50
[9] D. J. A. Welsh, Matroid Theory, Academic Press, London–New York, 1976 | MR | Zbl
[10] G. M. Ziegler, “Matroid representations and free arrangements”, Trans. Amer. Math. Soc., 320:2 (1990), 525–541 | DOI | MR | Zbl