Unitary Equivalence of Representations of Graph Algebras and Branching Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 2, pp. 45-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that, for many countable graphs, every representation of the associated graph algebra in a separable Hilbert space is unitarily equivalent to a representation obtained via branching systems.
Keywords: graph $C^*$-algebras, representation theory, unitary equivalence.
@article{FAA_2011_45_2_a2,
     author = {D. Goncalves and D. Royer},
     title = {Unitary {Equivalence} of {Representations} of {Graph} {Algebras} and {Branching} {Systems}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {45--59},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a2/}
}
TY  - JOUR
AU  - D. Goncalves
AU  - D. Royer
TI  - Unitary Equivalence of Representations of Graph Algebras and Branching Systems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 45
EP  - 59
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a2/
LA  - ru
ID  - FAA_2011_45_2_a2
ER  - 
%0 Journal Article
%A D. Goncalves
%A D. Royer
%T Unitary Equivalence of Representations of Graph Algebras and Branching Systems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 45-59
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a2/
%G ru
%F FAA_2011_45_2_a2
D. Goncalves; D. Royer. Unitary Equivalence of Representations of Graph Algebras and Branching Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 2, pp. 45-59. http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a2/

[1] M. Abe, K. Kawamura, “Recursive fermion system in Cuntz algebra. I. Embeddings of fermion algebra into Cuntz algebra”, Comm. Math. Phys., 228:1 (2002), 85–101 | DOI | MR | Zbl

[2] M. Abe, K. Kawamura, “Pseudo Cuntz algebra and recursive FP ghost system in string theory”, Internat. J. Modern. Phys., A18:4 (2003), 607–625 | DOI | MR | Zbl

[3] T. Bojdecki, L. G. Gorostiza, A. Talarczyk, “Limit theorems for occupation time fluctuations of branching systems. I. Long-range dependence”, Stochastic Process. Appl., 116:1 (2006), 1–18 | DOI | MR | Zbl

[4] O. Bratteli, P. E. T. Jorgensen, “A connection between multiresolution wavelet theory of scale $N$ and representations of the Cuntz algebra $O_N$”, Operator Algebras and Quantum Field Theory (Rome, 1996), Int. Press, Cambridge, MA, 1997, 151–163 | MR | Zbl

[5] A. Devulder, “The speed of a branching system of random walks in random environment”, Statist. Probab. Lett., 77:18 (2007), 1712–1721 | DOI | MR | Zbl

[6] G. Gierz, “Representation of spaces of compact operators and applications to the approximation property”, Arch. Math., 30:1 (1978), 622–628 | DOI | MR | Zbl

[7] D. Gonçalves, D. Royer, Graph algebras as subalgebras of the bounded operators in $L_2(\mathbb{R})$, predstavleno k publikatsii

[8] D. Gonçalves, D. Royer, “Perron–Frobenius operators and representations of the Cuntz–Krieger algebras for infinite matrices”, J. Math. Anal. Appl., 351 (2009), 811–818 | DOI | MR | Zbl

[9] D. Gonçalves, D. Royer, “On the representations of Leavitt path algebras”, J. Algebra, 333 (2011), 258–272 ; arXiv: 1006.2797v1 | DOI | MR

[10] K. J. Hochberg, A. Greven, “On the use of the Laplace functional for two-level branching systems”, Int. J. Pure Appl. Math., 55:2 (2009), 165–172 | MR | Zbl

[11] T. Katsura, A. Sims, M. Tomforde, “Realization of $AF$-algebras as graph algebras, Exel–Laca algebras, and ultragraph algebras”, J. Funct. Anal., 257:5 (2009), 1589–1620 | DOI | MR | Zbl

[12] K. Kawamura, Representations of the Cuntz algebra $O2$ arising from complex quadratic transformations—Annular basis of $L2(C)$, preprint RIMS, 2003, No. 1418

[13] K. Kawamura, Three representations of the Cuntz algebra $O2$ by a pair of operators arising from a $Z2$-graded dynamical system, preprint RIMS, 2003, No. 1415 | MR

[14] K. Kawamura, O. Suzuki, Construction of orthonormal basis on self-similar sets by generalized permutative representations of the Cuntz algebras, RIMS, 2003, No. 1408

[15] J. A. López-Mimbela, A. Murillo-Salas, “Laws of large numbers for the occupation time of an age-dependent critical binary branching system”, ALEA Lat. Am. J. Probab. Math. Stat., 6 (2009), 115–131 | MR

[16] N. J. Fowler, M. Laca, I. Raeburn, “The $C^*$-algebras of infinite graphs”, Proc. Amer. Math. Soc., 128:8 (2000), 2319–2327 | DOI | MR | Zbl

[17] T. Poomsa-ard, “Identities in universal graph algebras”, Int. Math. Forum, 4:33–36 (2009), 1715–1722 | MR | Zbl

[18] B. Salinier, R. Strandh, “Efficient simulation of forward-branching systems with constructor systems”, J. Symbolic Comput., 22:4 (1996), 381–399 | DOI | MR | Zbl