Unitary Equivalence of Representations of Graph Algebras and Branching Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 2, pp. 45-59
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that, for many countable graphs, every representation of the associated graph algebra in a separable Hilbert space is unitarily equivalent to a representation obtained via branching systems.
Keywords:
graph $C^*$-algebras, representation theory, unitary equivalence.
@article{FAA_2011_45_2_a2,
author = {D. Goncalves and D. Royer},
title = {Unitary {Equivalence} of {Representations} of {Graph} {Algebras} and {Branching} {Systems}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {45--59},
publisher = {mathdoc},
volume = {45},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a2/}
}
TY - JOUR AU - D. Goncalves AU - D. Royer TI - Unitary Equivalence of Representations of Graph Algebras and Branching Systems JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2011 SP - 45 EP - 59 VL - 45 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a2/ LA - ru ID - FAA_2011_45_2_a2 ER -
D. Goncalves; D. Royer. Unitary Equivalence of Representations of Graph Algebras and Branching Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 2, pp. 45-59. http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a2/