Krichever Formal Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 2, pp. 23-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of the general Weierstrass model of the cubic curve with parameters $\mu=(\mu_1,\mu_2,\mu_3,\mu_4,\mu_6)$, the explicit form of the formal group that corresponds to the Tate uniformization of this curve is described. This formal group is called the general elliptic formal group. The differential equation for its exponential is introduced and studied. As a consequence, results on the elliptic Hirzebruch genus with values in $\mathbb{Z}[\mu]$ are obtained. The notion of the universal Krichever formal group over the ring $\mathcal{A}_{\mathrm{Kr}}$ is introduced; its exponential is determined by the Baker–Akhiezer function $\Phi(t)=\Phi(t;\tau,g_2,g_3)$, where $\tau$ is a point on the elliptic curve with Weierstrass parameters $(g_2, g_3)$. As a consequence, results on the Krichever genus which takes values in the ring $\mathcal{A}_{\mathrm{Kr}}\otimes \mathbb{Q}$ of polynomials in four variables are obtained. Conditions necessary and sufficient for an elliptic formal group to be a Krichever formal group are found. A quasiperiodic function $\Psi(t)=\Psi(t; v,w, \mu)$ is introduced; its logarithmic derivative defines the exponential of the general elliptic formal group law, where $v$ and $w$ are points on the elliptic curve with parameters $\mu$. For $w\neq\pm v$, this function has the branching points $t=v$ and $t=-v$, and for $w=\pm v$, it coincides with $\Phi(t;v,g_2,g_3)$ and becomes meromorphic. An addition theorem for the function $\Psi(t)$ is obtained. According to this theorem, the function $\Psi(t)$ is the common eigenfunction of differential operators of orders 2 and 3 with doubly periodic coefficients.
Mots-clés : elliptic Hirzebruch genera
Keywords: addition theorems, Baker–Akhiezer function, deformed Lamé equation.
@article{FAA_2011_45_2_a1,
     author = {V. M. Buchstaber and E. Yu. Bun'kova},
     title = {Krichever {Formal} {Groups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {23--44},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a1/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - E. Yu. Bun'kova
TI  - Krichever Formal Groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 23
EP  - 44
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a1/
LA  - ru
ID  - FAA_2011_45_2_a1
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A E. Yu. Bun'kova
%T Krichever Formal Groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 23-44
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a1/
%G ru
%F FAA_2011_45_2_a1
V. M. Buchstaber; E. Yu. Bun'kova. Krichever Formal Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 2, pp. 23-44. http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a1/

[1] V. M. Bukhshtaber, “Kharakter Chzhenya–Dolda v kobordizmakh, I”, Matem. sb., 83:4 (1970), 575–595 | Zbl

[2] V. M. Bukhshtaber, A. S. Mischenko, S. P. Novikov, “Formalnye gruppy i ikh rol v apparate algebraicheskoi topologii”, UMN, 26:2 (1971), 131–154 | MR | Zbl

[3] V. M. Bukhshtaber, “Funktsionalnye uravneniya, assotsiirovannye s teoremami slozheniya dlya ellipticheskikh funktsii, i dvuznachnye algebraicheskie gruppy”, UMN, 45:3 (1990), 185–186 | MR | Zbl

[4] V. M. Bukhshtaber, H. Rai, “Toricheskie mnogoobraziya i kompleksnye kobordizmy”, UMN, 53:2 (1998), 139–140 | DOI | MR | Zbl

[5] V. M. Buchstaber, T. E. Panov, N. Ray, “Spaces of polytopes and cobordism of quasitoric manifolds”, Moscow Math. J., 7:2 (2007), 219–242 ; arXiv: math/0609346 | DOI | MR | Zbl

[6] V. M. Bukhshtaber, “Obschii rod Krichevera”, UMN, 65:5(395) (2010), 187–188 | DOI | MR

[7] V. M. Buchstaber, E. Yu. Bunkova, Elliptic formal group laws, integral Hirzebruch genera and Krichever genera, arXiv: 1010.0944

[8] V. M. Buchstaber, E. Yu. Bunkova, “Addition theorems, formal group laws and integrable systems”, XXIX Workshop on Geometrical Methods in Physics, AIP Conference Proceedings, 1307, 2010, 33–43 | DOI | MR

[9] V. M. Bukhshtaber, D. V. Leikin, “Zakony slozheniya na yakobianakh ploskikh algebraicheskikh krivykh”, Nelineinaya dinamika, Trudy MIAN, 251, Nauka, M., 2005, 54–126 | MR

[10] E. Yu. Bunkova, “Teorema slozheniya dlya deformirovannoi funktsii Beikera–Akhiezera”, UMN, 65:6(396) (2010), 183–184 | DOI | MR

[11] M. Hazewinkel, Formal Groups and Applications, Academic Press, New York–San Francisco–London, 1978 | MR | Zbl

[12] F. Khirtsebrukh, “Kompleksnye mnogoobraziya”, Mezhdunarodnyi matematicheskii kongress v Edinburge (1958), Fizmatgiz, M., 1962, 138–157

[13] F. Khirtsebrukh, Topologicheskie metody v algebraicheskoi geometrii, Mir, 1973

[14] F. Hirzebruch, Elliptic genera of level $N$ for complex manifolds, Preprint MPI 88-24

[15] E. Knepp, Ellipticheskie krivye, Faktorial Press, M., 2004

[16] I. M. Krichever, “Formalnye gruppy i formula Ati–Khirtsebrukha”, Izv. AN SSSR, ser. matem., 38:6 (1974), 1289–1304 | MR | Zbl

[17] I. M. Krichever, “Ellipticheskie resheniya uravneniya Kadomtseva–Petviashvili i integriruemye sistemy chastits”, Funkts. analiz i ego pril., 14:4 (1980), 45–54 | MR | Zbl

[18] I. M. Krichever, “Obobschennye ellipticheskie rody i funktsii Beikera–Akhiezera”, Matem. zametki, 47:2 (1990), 34–45 | MR | Zbl

[19] M. Lazard, “Sur les groupes de Lie formels à un paramètre”, Bull. Soc. Math. France, 83 (1955), 251–274 | DOI | MR | Zbl

[20] J. Milnor, “On the cobordism ring $\Omega_*$ and complex analogue, Part I”, Amer. J. Math., 82:3 (1960), 505–521 | DOI | MR | Zbl

[21] S. P. Novikov, “O nekotorykh zadachakh topologii mnogoobrazii, svyazannykh s teoriei prostranstv Toma”, DAN SSSR, 132:5 (1960), 1031–1034 | Zbl

[22] S. P. Novikov, “Gomotopicheskie svoistva kompleksov Toma”, Matem. sb., 57(99):4 (1962), 407–442 | MR | Zbl

[23] S. P. Novikov, “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR, ser. matem., 31:4 (1967), 855–951 | Zbl

[24] S. P. Novikov, “Operatory Adamsa i nepodvizhnye tochki”, Izv. AN SSSR, ser. matem., 32:6 (1968), 1245–1263 | MR | Zbl

[25] S. Ochanine, “Sur les genres multiplicatifs définis par des intégrales elliptiques”, Topology, 26:2 (1987), 143–151 | DOI | MR | Zbl

[26] D. Quillen, “On the formal group laws of unoriented and complex cobordism theory”, Bull. Amer. Math. Soc., 75:6 (1969), 1293–1298 ; D. Kvillen, “O formalnykh gruppakh v teoriyakh neorientirovannykh i unitarnykh kobordizmov, Razdel 7”, Kobordizmy i ikh prilozheniya, Topologicheskaya biblioteka, I, Moskva–Izhevsk, 2005 | DOI | MR | Zbl

[27] N. P. Smart, “The Hessian form of an elliptic curve”, CHES 2001, Lecture Notes in Comput. Sci., 2162, Springer-Verlag, Berlin, 2001, 118–125 | DOI | MR | Zbl

[28] R. Stong, Zametki po teorii kobordizmov (s prilozheniem V. M. Bukhshtabera), Mir, M., 1973 | MR | Zbl

[29] J. T. Tate, “The arithmetic of elliptic curves”, Invent. Math., 23:3-4 (1974), 179–206, Springer-Verlag | DOI | MR

[30] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, ch. 2. Transtsendentnye funktsii, URSS, Moskva, 2010