Geometry of Ces\`aro Function Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 79-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

Geometric properties of Cesàro function spaces $\operatorname{Ces}_{p}(I)$, where $I=[0,\infty)$ or $I=[0,1]$, are investigated. In both cases, a description of their dual spaces for $1$ is given. We find the type and the cotype of Cesàro spaces and present a complete characterization of the spaces $l^q$ that have isomorphic copies in $\operatorname{Ces}_{p}[0,1]$ ($1\le p\infty$).
Keywords: Cesàro space, Köthe dual space, dual space, $q$-concave Banach space, type and cotype of a Banach space, Dunford–Pettis property.
@article{FAA_2011_45_1_a6,
     author = {S. V. Astashkin and L. Maligranda},
     title = {Geometry of {Ces\`aro} {Function} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {79--83},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a6/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - L. Maligranda
TI  - Geometry of Ces\`aro Function Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 79
EP  - 83
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a6/
LA  - ru
ID  - FAA_2011_45_1_a6
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A L. Maligranda
%T Geometry of Ces\`aro Function Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 79-83
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a6/
%G ru
%F FAA_2011_45_1_a6
S. V. Astashkin; L. Maligranda. Geometry of Ces\`aro Function Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 79-83. http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a6/

[1] A. A. Jagers, Nieuw Arch. Wiskund. (3), 22 (1974), 113–124 | MR | Zbl

[2] B. I. Korenblyum, S. G. Krein, V. Ya. Levin, Dokl. AN SSSR (n.s.), 62 (1948), 17–20 | MR | Zbl

[3] W. Wnuk, Banach Lattices with Order Continuous Norms, Polish Scientific Publishers PWN, Warzaw, 1999 | Zbl

[4] J.-S. Shiue, Tamkang J. Math., 1 (1970), 91–95 | MR | Zbl

[5] B. D. Hassard, D. A. Hussein, Tamkang J. Math., 4 (1973), 19–25 | MR | Zbl

[6] P. W. Sy, W. Y. Zhang, P. Y. Lee, Glas. Mat. Ser. III, 22:1 (1987), 103–112 | MR | Zbl

[7] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[8] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[9] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, II. Function Spaces, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl

[10] G. Bennett, Factorizing the Classical Inequalities, Mem. Amer. Math. Soc., 120, Amer. Math. Soc., Providence, RI, 1996 | MR

[11] W. A. J. Luxemburg, A. C. Zaanen, Math. Ann., 162 (1965/1966), 337–350 | DOI | MR

[12] K. Tandori, Publ. Math. Debrecen., 3 (1954), 263–268 | DOI | MR | Zbl

[13] S. V. Astashkin, L. Maligranda, Proc. Amer. Math. Soc., 136:12 (2008), 4289–4294 | DOI | MR | Zbl

[14] F. Albiac, N. J. Kalton, Topics in Banach Space Theory, Graduate Texts in Math., 233, Springer-Verlag, New York, 2006 | MR

[15] M. I. Kadec, A. Pełczyński, Studia Math., 21 (1962), 161–176 | DOI | MR | Zbl