Geometry of Ces\`aro Function Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 79-83

Voir la notice de l'article provenant de la source Math-Net.Ru

Geometric properties of Cesàro function spaces $\operatorname{Ces}_{p}(I)$, where $I=[0,\infty)$ or $I=[0,1]$, are investigated. In both cases, a description of their dual spaces for $1$ is given. We find the type and the cotype of Cesàro spaces and present a complete characterization of the spaces $l^q$ that have isomorphic copies in $\operatorname{Ces}_{p}[0,1]$ ($1\le p\infty$).
Keywords: Cesàro space, Köthe dual space, dual space, $q$-concave Banach space, type and cotype of a Banach space, Dunford–Pettis property.
@article{FAA_2011_45_1_a6,
     author = {S. V. Astashkin and L. Maligranda},
     title = {Geometry of {Ces\`aro} {Function} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {79--83},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a6/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - L. Maligranda
TI  - Geometry of Ces\`aro Function Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 79
EP  - 83
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a6/
LA  - ru
ID  - FAA_2011_45_1_a6
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A L. Maligranda
%T Geometry of Ces\`aro Function Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 79-83
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a6/
%G ru
%F FAA_2011_45_1_a6
S. V. Astashkin; L. Maligranda. Geometry of Ces\`aro Function Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 79-83. http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a6/