Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2011_45_1_a4, author = {V. Yu. Protasov}, title = {On {Linear} {Selections} of {Convex} {Set-Valued} {Maps}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {56--68}, publisher = {mathdoc}, volume = {45}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a4/} }
V. Yu. Protasov. On Linear Selections of Convex Set-Valued Maps. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 56-68. http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a4/
[1] A. D. Ioffe, “Nonsmooth analysis: differential calculus of nondifferentiable mappings”, Trans. Amer. Math. Soc., 266:1 (1981), 1–56 | DOI | MR | Zbl
[2] A. M. Rubinov, “Sublineinye operatory i ikh prilozheniya”, UMN, 32:4 (1977), 113–174 | MR | Zbl
[3] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, “O novykh rezultatakh v teorii mnogoznachnykh otobrazhenii. I. Topologicheskie kharakteristiki i razreshimost operatornykh sootnoshenii”, Itogi nauki i tekhniki. Matematicheskii analiz, 25, VINITI, M., 1987, 123–197 | MR
[4] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, “Mnogoznachnye otobrazheniya”, Itogi nauki i tekhniki. Matematicheskii analiz, 19, VINITI, M., 1982, 127–230 | MR
[5] E. Michael, “Continuous selections. I”, Ann. of Math., 63:2 (1956), 361–382 | DOI | MR | Zbl
[6] V. V. Gorokhovik, “Representations of affine multifunctions by affine selections”, Set-Valued Anal., 16:2-3 (2008), 185–198 | DOI | MR | Zbl
[7] A. Ya. Zaslavskii, “O suschestvovanii lineinogo selektora superlineinogo mnogoznachnogo otobrazheniya”, Matem. zametki, 29:4 (1981), 557–566 | MR
[8] A. Smajdor, “Additive selections of superadditive set-valued functions”, Aequationes Math., 39:2–3 (1990), 121–128 | DOI | MR | Zbl
[9] A. Smajdor, W. Smajdor, “Affine selections of convex set-valued functions”, Aequationes Mathematicae, 51 (1996), 12–20 | DOI | MR | Zbl
[10] D. Popa, “Additive selections of $(\alpha,\beta)$-subadditive set-valued maps”, Glas. Mat. Ser. III, 36:1 (2001), 11–16 | MR | Zbl
[11] Z. Páles, “Linear selections for set-valued functions and extension of bilinear forms”, Arch. Math., 62:5 (1994), 427–432 | DOI | MR | Zbl
[12] K. Nikodem, Z. Páles, Sz. Wa̧sowicz, “Multifunctions with selections of convex and concave type”, Math. Pannon., 11:2 (2000), 249–260 | MR | Zbl
[13] G. G. Magaril-Ilyaev, V. M. Tikhomirov, Vypuklyi analiz i ego prilozheniya, URSS, M., 2000 | MR
[14] J. Diestel, J. J. Uhl, Vector Measures, Amer. Math. Soc., Providence, RI, 1977 | MR | Zbl
[15] J. Tabor, D. Yost, “Applications of inverse limits to extensions of operators and approximation of Lipschitz functions”, J. Approx. Theory, 116:2 (2002), 257–267 | DOI | MR | Zbl
[16] S. M. Ulam, A collection of mathematical problems, Interscience Publ., New York–London, 1960 | MR | Zbl
[17] D. H. Hyers, “On the stability of the linear functional equation”, Proc. Nat. Acd. Sci. USA, 27 (1941), 222–224 | DOI | MR | Zbl
[18] Th. M. Rassias, “On the stability of functional equations and a problem of Ulam”, Acta Appl. Math., 62:1 (2000), 23–130 | DOI | MR | Zbl
[19] J. Chmielinski, “Report on the 12th ICFEI”, Ann. Acad. Pedagog. Crac. Stud. Math., 7 (2008), 125–159 | MR
[20] S.-M. Jung, “On the Hyers-Ulam-Rassias stability of approximately additive mappings”, J. Math. Anal. Appl., 204:1 (1996), 221–226 | DOI | MR | Zbl
[21] P. Gǎvruta, “A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings”, J. Math. Anal. Appl., 184:3 (1994), 431–436 | DOI | MR
[22] B. E. Johnson, “Approximately multiplicative maps between Banach algebras”, J. London Math. Soc., Ser. 2, 37:2 (1988), 294–316 | DOI | MR | Zbl
[23] Z. Gajda, “On stability of additive mappings”, Internat. J. Math. Sci., 14:3 (1991), 431–434 | DOI | MR | Zbl
[24] P. Šemrl, “The stability of approximately additive functions”, Stability of Mappings of Hyers–Ulam Type, eds. Th. M. Rassias, J. Tabor, Hadronic Press, Palm Harbor, FL, 1994, 135–140 | MR