On Linear Selections of Convex Set-Valued Maps
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 56-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study continuous subadditive set-valued maps taking points of a linear space $X$ to convex compact subsets of a linear space $Y$. The subadditivity means that $\varphi(x_1+x_2)\subset \varphi(x_1) + \varphi(x_2)$. We characterize all pairs of locally convex spaces $(X, Y)$ for which any such map has a linear selection, i.e., there exists a linear operator $A\colon X \to Y$ such that $Ax \in \varphi (x)$, $x\in X$. The existence of linear selections for a class of subadditive maps generated by differences of a continuous function is proved. This result is applied to the Lipschitz stability problem for linear operators in Banach spaces.
Keywords: set-valued map, linear selection, subadditivity, Lipschitz function, stability of linear operators.
@article{FAA_2011_45_1_a4,
     author = {V. Yu. Protasov},
     title = {On {Linear} {Selections} of {Convex} {Set-Valued} {Maps}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {56--68},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a4/}
}
TY  - JOUR
AU  - V. Yu. Protasov
TI  - On Linear Selections of Convex Set-Valued Maps
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 56
EP  - 68
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a4/
LA  - ru
ID  - FAA_2011_45_1_a4
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%T On Linear Selections of Convex Set-Valued Maps
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 56-68
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a4/
%G ru
%F FAA_2011_45_1_a4
V. Yu. Protasov. On Linear Selections of Convex Set-Valued Maps. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 56-68. http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a4/

[1] A. D. Ioffe, “Nonsmooth analysis: differential calculus of nondifferentiable mappings”, Trans. Amer. Math. Soc., 266:1 (1981), 1–56 | DOI | MR | Zbl

[2] A. M. Rubinov, “Sublineinye operatory i ikh prilozheniya”, UMN, 32:4 (1977), 113–174 | MR | Zbl

[3] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, “O novykh rezultatakh v teorii mnogoznachnykh otobrazhenii. I. Topologicheskie kharakteristiki i razreshimost operatornykh sootnoshenii”, Itogi nauki i tekhniki. Matematicheskii analiz, 25, VINITI, M., 1987, 123–197 | MR

[4] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, “Mnogoznachnye otobrazheniya”, Itogi nauki i tekhniki. Matematicheskii analiz, 19, VINITI, M., 1982, 127–230 | MR

[5] E. Michael, “Continuous selections. I”, Ann. of Math., 63:2 (1956), 361–382 | DOI | MR | Zbl

[6] V. V. Gorokhovik, “Representations of affine multifunctions by affine selections”, Set-Valued Anal., 16:2-3 (2008), 185–198 | DOI | MR | Zbl

[7] A. Ya. Zaslavskii, “O suschestvovanii lineinogo selektora superlineinogo mnogoznachnogo otobrazheniya”, Matem. zametki, 29:4 (1981), 557–566 | MR

[8] A. Smajdor, “Additive selections of superadditive set-valued functions”, Aequationes Math., 39:2–3 (1990), 121–128 | DOI | MR | Zbl

[9] A. Smajdor, W. Smajdor, “Affine selections of convex set-valued functions”, Aequationes Mathematicae, 51 (1996), 12–20 | DOI | MR | Zbl

[10] D. Popa, “Additive selections of $(\alpha,\beta)$-subadditive set-valued maps”, Glas. Mat. Ser. III, 36:1 (2001), 11–16 | MR | Zbl

[11] Z. Páles, “Linear selections for set-valued functions and extension of bilinear forms”, Arch. Math., 62:5 (1994), 427–432 | DOI | MR | Zbl

[12] K. Nikodem, Z. Páles, Sz. Wa̧sowicz, “Multifunctions with selections of convex and concave type”, Math. Pannon., 11:2 (2000), 249–260 | MR | Zbl

[13] G. G. Magaril-Ilyaev, V. M. Tikhomirov, Vypuklyi analiz i ego prilozheniya, URSS, M., 2000 | MR

[14] J. Diestel, J. J. Uhl, Vector Measures, Amer. Math. Soc., Providence, RI, 1977 | MR | Zbl

[15] J. Tabor, D. Yost, “Applications of inverse limits to extensions of operators and approximation of Lipschitz functions”, J. Approx. Theory, 116:2 (2002), 257–267 | DOI | MR | Zbl

[16] S. M. Ulam, A collection of mathematical problems, Interscience Publ., New York–London, 1960 | MR | Zbl

[17] D. H. Hyers, “On the stability of the linear functional equation”, Proc. Nat. Acd. Sci. USA, 27 (1941), 222–224 | DOI | MR | Zbl

[18] Th. M. Rassias, “On the stability of functional equations and a problem of Ulam”, Acta Appl. Math., 62:1 (2000), 23–130 | DOI | MR | Zbl

[19] J. Chmielinski, “Report on the 12th ICFEI”, Ann. Acad. Pedagog. Crac. Stud. Math., 7 (2008), 125–159 | MR

[20] S.-M. Jung, “On the Hyers-Ulam-Rassias stability of approximately additive mappings”, J. Math. Anal. Appl., 204:1 (1996), 221–226 | DOI | MR | Zbl

[21] P. Gǎvruta, “A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings”, J. Math. Anal. Appl., 184:3 (1994), 431–436 | DOI | MR

[22] B. E. Johnson, “Approximately multiplicative maps between Banach algebras”, J. London Math. Soc., Ser. 2, 37:2 (1988), 294–316 | DOI | MR | Zbl

[23] Z. Gajda, “On stability of additive mappings”, Internat. J. Math. Sci., 14:3 (1991), 431–434 | DOI | MR | Zbl

[24] P. Šemrl, “The stability of approximately additive functions”, Stability of Mappings of Hyers–Ulam Type, eds. Th. M. Rassias, J. Tabor, Hadronic Press, Palm Harbor, FL, 1994, 135–140 | MR