Weierstrass Representation for Discrete Isotropic Surfaces in $\mathbb{R}^{2,1}$, $\mathbb{R}^{3,1}$, and~$\mathbb{R}^{2,2}$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 31-40
Voir la notice de l'article provenant de la source Math-Net.Ru
Using an integrable discrete Dirac operator, we construct a discrete version of the Weierstrass representation for hyperbolic surfaces parameterized along isotropic directions in $\mathbb{R}^{2,1}$, $\mathbb{R}^{3,1}$, and $\mathbb{R}^{2,2}$. The corresponding discrete surfaces have isotropic edges. We show that any discrete surface satisfying a general monotonicity condition and having isotropic edges admits such a representation.
Keywords:
integrable system, discretization, discrete differential geometry.
@article{FAA_2011_45_1_a2,
author = {D. V. Zakharov},
title = {Weierstrass {Representation} for {Discrete} {Isotropic} {Surfaces} in $\mathbb{R}^{2,1}$, $\mathbb{R}^{3,1}$, and~$\mathbb{R}^{2,2}$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {31--40},
publisher = {mathdoc},
volume = {45},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a2/}
}
TY - JOUR
AU - D. V. Zakharov
TI - Weierstrass Representation for Discrete Isotropic Surfaces in $\mathbb{R}^{2,1}$, $\mathbb{R}^{3,1}$, and~$\mathbb{R}^{2,2}$
JO - Funkcionalʹnyj analiz i ego priloženiâ
PY - 2011
SP - 31
EP - 40
VL - 45
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a2/
LA - ru
ID - FAA_2011_45_1_a2
ER -
%0 Journal Article
%A D. V. Zakharov
%T Weierstrass Representation for Discrete Isotropic Surfaces in $\mathbb{R}^{2,1}$, $\mathbb{R}^{3,1}$, and~$\mathbb{R}^{2,2}$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 31-40
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a2/
%G ru
%F FAA_2011_45_1_a2
D. V. Zakharov. Weierstrass Representation for Discrete Isotropic Surfaces in $\mathbb{R}^{2,1}$, $\mathbb{R}^{3,1}$, and~$\mathbb{R}^{2,2}$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 31-40. http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a2/