Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2011_45_1_a0, author = {M. S. Agranovich}, title = {Strongly {Elliptic} {Second-Order} {Systems} with {Boundary} {Conditions} on a {Nonclosed} {Lipschitz} {Surface}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--15}, publisher = {mathdoc}, volume = {45}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a0/} }
TY - JOUR AU - M. S. Agranovich TI - Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2011 SP - 1 EP - 15 VL - 45 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a0/ LA - ru ID - FAA_2011_45_1_a0 ER -
M. S. Agranovich. Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 1-15. http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a0/
[1] M. C. Agranovich, “Regulyarnost variatsionnykh reshenii lineinykh granichnykh zadach v lipshitsevykh oblastyakh”, Funkts. analiz i ego pril., 40:4 (2006), 83–103 | DOI | MR | Zbl
[2] M. S. Agranovich, “Spektralnye zadachi v lipshitsevykh oblastyakh dlya silno ellipticheskikh sistem v banakhovykh prostranstvakh $H_p^\sigma$ i $B_p^\sigma$”, Funkts. analiz i ego pril., 42:4 (2008), 2–23 | DOI | MR | Zbl
[3] M. C. Agranovich, “Operatory tipa potentsiala i zadachi sopryazheniya dlya silno ellipticheskikh sistem $2$-go poryadka v oblastyakh s lipshitsevoi granitsei”, Funkts. analiz i ego pril., 43:3 (2009), 3–25 | DOI | MR
[4] M. C. Agranovich, “Spektralnye zadachi v lipshitsevykh oblastyakh”, Uravneniya v chastnykh proizvodnykh, Sovremennaya matematika. Fundamentalnye napravleniya, 39, RUDN, M., 2011, 11–35
[5] M. C. Agranovich, “Smeshannye zadachi v lipshitsevoi oblasti dlya silno ellipticheskikh sistem 2-go poryadka”, Funkts. analiz i ego pril., 45:2 (2011), 1–22 | DOI | MR
[6] M. S. Agranovich, “Strongly elliptic second order systems with spectral parameter in transmission conditions on a nonclosed surface”, Operator Theory: Advances and Applications, 164, Birkhäuser, Basel, 2006, 1–21 | DOI | MR | Zbl
[7] M. C. Agranovich, B. A. Amosov, “Otsenki $s$-chisel i spektralnye asimptotiki dlya integralnykh operatorov tipa potentsiala na negladkikh poverkhnostyakh”, Funkts. analiz i ego pril., 30:2 (1996), 1–18 | DOI | MR | Zbl
[8] M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, N. N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCH, Berlin, 1999 (Pererabotannoe angliiskoe izdanie knigi [31]) | MR | Zbl
[9] I. Berg, I. Lëfstrëm, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR
[10] M. Sh. Birman, M. Z. Solomyak, “Spektralnaya asimptotika negladkikh ellipticheskikh operatorov, I”, Trudy MMO, 27, 1972, 3–52 | MR | Zbl
[11] M. Costabel, M. Dauge, “On representation formulas and radiation conditions”, Math. Methods Appl. Sci., 20:2 (1997), 133–150 | 3.0.CO;2-Y class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[12] M. Costabel, E. Stephan, “An improved boundary element Galerkin method for three-dimensional crack problems”, Integral Equations and Operator Theory, 10:4 (1987), 467–504 | DOI | MR | Zbl
[13] B. E. J. Dahlberg, C. E. Kenig, G. C. Verchota, “Boundary value problems for systems of elastostatics in Lipschitz domains”, Duke Math. J., 57:3 (1988), 795–818 | DOI | MR | Zbl
[14] R. Duduchava, D. Natroshvili, “Mixed crack type problem in anisotropic elasticity”, Math. Nachr., 191 (1998), 83–107 | DOI | MR | Zbl
[15] R. V. Duduchava, D. G. Natroshvili, E. M. Shargorodskii, “Granichnye zadachi matematicheskoi teorii treschin”, Trudy Instituta prikladnoi matematiki im. I. N. Vekua Tbilisskogo univ., 39 (1990), 68–84 | MR | Zbl
[16] R. Duduchava, W. L. Wendland, “The Wiener–Hopf method for systems of pseudodifferential equations with an application to crack problems”, Integral Equations Operator Theory, 23:3 (1995), 294–335 | DOI | MR | Zbl
[17] G. I. Eskin, Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973 | MR
[18] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985 | MR | Zbl
[19] G. C. Hsiao, E. P. Stephan, W. L. Wendland, “An integral equation formulation for a boundary value problem of elasticity in the domain exterior to an arc”, Lecture Notes in Math., 1121, Springer-Verlag, Berlin, 1983, 153–165 | DOI | MR
[20] G. C. Hsiao, W. L. Wendland, Boundary Integral Equations, Springer-Verlag, Berlin, 2008 | MR
[21] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[22] S. E. Mikhailov, Traces, extensions, co-normal derivatives and solution regularity of elliptic systems with smooth and non-smooth coefficients, arXiv: 0906.3875
[23] M. Mitrea, M. Taylor, “Boundary layer methods for Lipschitz domains in Riemannian manifolds”, J. Funct. Anal., 163:2 (1999), 181–251 | DOI | MR | Zbl
[24] J. Nec̆as, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967 | MR | Zbl
[25] O. A. Oleinik, A. S. Shamaev, G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North Holland, Amsterdam, 1992 | MR
[26] G. Rozenblum, G. Tashchiyan, “Eigenvalue asymptotics for potential type operators on Lipschitz surfaces”, Russian J. Math. Phys., 13:3 (2006), 326–339 | DOI | MR | Zbl
[27] I. Ya. Shneiberg, “Spektralnye svoistva lineinykh operatorov v interpolyatsionnykh semeistvakh banakhovykh prostranstv”, Matem. issled., 9:2 (1974), 214–227 | MR
[28] E. Stephan, Boundary integral equations for mixed boundary value problems, screen and transmission problems in $\mathbb{R}^3$, Habilitationsschrift, Darmstadt, THD-preprint 848, 1984 | MR
[29] E. Stephan, “A boundary integral equation method for three-dimensional crack problems in elasticity”, Math. Methods Appl. Sci., 8:4 (1986), 609–623 | DOI | MR | Zbl
[30] E. Stephan, “Boundary integral equations for screen problems in $\mathbb{R}^3$”, Integral Equations Operator Theory, 10:2 (1987), 236–257 | DOI | MR | Zbl
[31] N. N. Voitovich, B. Z. Katsenelenbaum, A. N. Sivov, Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, s dobavleniem M. S. Agranovicha «Spektralnye svoistva zadach difraktsii», str. 289–416, Nauka, M., 1977 | MR