Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 1-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider boundary value problems and transmission problems for strongly elliptic second-order systems with boundary conditions on a compact nonclosed Lipschitz surface $S$ with Lipschitz boundary. The main goal is to find conditions for the unique solvability of these problems in the spaces $H^s$, the simplest $L_2$-spaces of the Sobolev type, with the use of potential type operators on $S$. We also discuss, first, the regularity of solutions in somewhat more general Bessel potential spaces and Besov spaces and, second, the spectral properties of problems with spectral parameter in the transmission conditions on $S$, including the asymptotics of the eigenvalues.
Keywords: strong ellipticity, Lipschitz domain, nonclosed boundary, potential type operators, Bessel potential spaces, regularity of solutions, spectral transmission problems, spectral asymptotics.
Mots-clés : Besov spaces
@article{FAA_2011_45_1_a0,
     author = {M. S. Agranovich},
     title = {Strongly {Elliptic} {Second-Order} {Systems} with {Boundary} {Conditions} on a {Nonclosed} {Lipschitz} {Surface}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--15},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a0/}
}
TY  - JOUR
AU  - M. S. Agranovich
TI  - Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 1
EP  - 15
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a0/
LA  - ru
ID  - FAA_2011_45_1_a0
ER  - 
%0 Journal Article
%A M. S. Agranovich
%T Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 1-15
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a0/
%G ru
%F FAA_2011_45_1_a0
M. S. Agranovich. Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 1-15. http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a0/

[1] M. C. Agranovich, “Regulyarnost variatsionnykh reshenii lineinykh granichnykh zadach v lipshitsevykh oblastyakh”, Funkts. analiz i ego pril., 40:4 (2006), 83–103 | DOI | MR | Zbl

[2] M. S. Agranovich, “Spektralnye zadachi v lipshitsevykh oblastyakh dlya silno ellipticheskikh sistem v banakhovykh prostranstvakh $H_p^\sigma$ i $B_p^\sigma$”, Funkts. analiz i ego pril., 42:4 (2008), 2–23 | DOI | MR | Zbl

[3] M. C. Agranovich, “Operatory tipa potentsiala i zadachi sopryazheniya dlya silno ellipticheskikh sistem $2$-go poryadka v oblastyakh s lipshitsevoi granitsei”, Funkts. analiz i ego pril., 43:3 (2009), 3–25 | DOI | MR

[4] M. C. Agranovich, “Spektralnye zadachi v lipshitsevykh oblastyakh”, Uravneniya v chastnykh proizvodnykh, Sovremennaya matematika. Fundamentalnye napravleniya, 39, RUDN, M., 2011, 11–35

[5] M. C. Agranovich, “Smeshannye zadachi v lipshitsevoi oblasti dlya silno ellipticheskikh sistem 2-go poryadka”, Funkts. analiz i ego pril., 45:2 (2011), 1–22 | DOI | MR

[6] M. S. Agranovich, “Strongly elliptic second order systems with spectral parameter in transmission conditions on a nonclosed surface”, Operator Theory: Advances and Applications, 164, Birkhäuser, Basel, 2006, 1–21 | DOI | MR | Zbl

[7] M. C. Agranovich, B. A. Amosov, “Otsenki $s$-chisel i spektralnye asimptotiki dlya integralnykh operatorov tipa potentsiala na negladkikh poverkhnostyakh”, Funkts. analiz i ego pril., 30:2 (1996), 1–18 | DOI | MR | Zbl

[8] M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, N. N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCH, Berlin, 1999 (Pererabotannoe angliiskoe izdanie knigi [31]) | MR | Zbl

[9] I. Berg, I. Lëfstrëm, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[10] M. Sh. Birman, M. Z. Solomyak, “Spektralnaya asimptotika negladkikh ellipticheskikh operatorov, I”, Trudy MMO, 27, 1972, 3–52 | MR | Zbl

[11] M. Costabel, M. Dauge, “On representation formulas and radiation conditions”, Math. Methods Appl. Sci., 20:2 (1997), 133–150 | 3.0.CO;2-Y class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[12] M. Costabel, E. Stephan, “An improved boundary element Galerkin method for three-dimensional crack problems”, Integral Equations and Operator Theory, 10:4 (1987), 467–504 | DOI | MR | Zbl

[13] B. E. J. Dahlberg, C. E. Kenig, G. C. Verchota, “Boundary value problems for systems of elastostatics in Lipschitz domains”, Duke Math. J., 57:3 (1988), 795–818 | DOI | MR | Zbl

[14] R. Duduchava, D. Natroshvili, “Mixed crack type problem in anisotropic elasticity”, Math. Nachr., 191 (1998), 83–107 | DOI | MR | Zbl

[15] R. V. Duduchava, D. G. Natroshvili, E. M. Shargorodskii, “Granichnye zadachi matematicheskoi teorii treschin”, Trudy Instituta prikladnoi matematiki im. I. N. Vekua Tbilisskogo univ., 39 (1990), 68–84 | MR | Zbl

[16] R. Duduchava, W. L. Wendland, “The Wiener–Hopf method for systems of pseudodifferential equations with an application to crack problems”, Integral Equations Operator Theory, 23:3 (1995), 294–335 | DOI | MR | Zbl

[17] G. I. Eskin, Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973 | MR

[18] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985 | MR | Zbl

[19] G. C. Hsiao, E. P. Stephan, W. L. Wendland, “An integral equation formulation for a boundary value problem of elasticity in the domain exterior to an arc”, Lecture Notes in Math., 1121, Springer-Verlag, Berlin, 1983, 153–165 | DOI | MR

[20] G. C. Hsiao, W. L. Wendland, Boundary Integral Equations, Springer-Verlag, Berlin, 2008 | MR

[21] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[22] S. E. Mikhailov, Traces, extensions, co-normal derivatives and solution regularity of elliptic systems with smooth and non-smooth coefficients, arXiv: 0906.3875

[23] M. Mitrea, M. Taylor, “Boundary layer methods for Lipschitz domains in Riemannian manifolds”, J. Funct. Anal., 163:2 (1999), 181–251 | DOI | MR | Zbl

[24] J. Nec̆as, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967 | MR | Zbl

[25] O. A. Oleinik, A. S. Shamaev, G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North Holland, Amsterdam, 1992 | MR

[26] G. Rozenblum, G. Tashchiyan, “Eigenvalue asymptotics for potential type operators on Lipschitz surfaces”, Russian J. Math. Phys., 13:3 (2006), 326–339 | DOI | MR | Zbl

[27] I. Ya. Shneiberg, “Spektralnye svoistva lineinykh operatorov v interpolyatsionnykh semeistvakh banakhovykh prostranstv”, Matem. issled., 9:2 (1974), 214–227 | MR

[28] E. Stephan, Boundary integral equations for mixed boundary value problems, screen and transmission problems in $\mathbb{R}^3$, Habilitationsschrift, Darmstadt, THD-preprint 848, 1984 | MR

[29] E. Stephan, “A boundary integral equation method for three-dimensional crack problems in elasticity”, Math. Methods Appl. Sci., 8:4 (1986), 609–623 | DOI | MR | Zbl

[30] E. Stephan, “Boundary integral equations for screen problems in $\mathbb{R}^3$”, Integral Equations Operator Theory, 10:2 (1987), 236–257 | DOI | MR | Zbl

[31] N. N. Voitovich, B. Z. Katsenelenbaum, A. N. Sivov, Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, s dobavleniem M. S. Agranovicha «Spektralnye svoistva zadach difraktsii», str. 289–416, Nauka, M., 1977 | MR