Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 1-15
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider boundary value problems and transmission problems for strongly elliptic second-order systems with boundary conditions on a compact nonclosed Lipschitz surface $S$ with Lipschitz boundary. The main goal is to find conditions for the unique solvability of these problems in the spaces $H^s$, the simplest $L_2$-spaces of the Sobolev type, with the use of potential type operators on $S$. We also discuss, first, the regularity of solutions in somewhat more general Bessel potential spaces and Besov spaces and, second, the spectral properties of problems with spectral parameter in the transmission conditions on $S$, including the asymptotics of the eigenvalues.
Keywords:
strong ellipticity, Lipschitz domain, nonclosed boundary, potential type operators, Bessel potential spaces, regularity of solutions, spectral transmission problems, spectral asymptotics.
Mots-clés : Besov spaces
Mots-clés : Besov spaces
@article{FAA_2011_45_1_a0,
author = {M. S. Agranovich},
title = {Strongly {Elliptic} {Second-Order} {Systems} with {Boundary} {Conditions} on a {Nonclosed} {Lipschitz} {Surface}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--15},
publisher = {mathdoc},
volume = {45},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a0/}
}
TY - JOUR AU - M. S. Agranovich TI - Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2011 SP - 1 EP - 15 VL - 45 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a0/ LA - ru ID - FAA_2011_45_1_a0 ER -
M. S. Agranovich. Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 1-15. http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a0/