On Spectral Estimates for Schr\"odinger-Type Operators: The Case of Small Local Dimension
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 4, pp. 21-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of the discrete spectrum of the Schrödinger operator $-\Delta-V$ is determined to a large extent by the behavior of the corresponding heat kernel $P(t;x,y)$ as $t\to 0$ and $t\to\infty$. If this behavior is power-like, i.e., $$ \|P(t;\cdot,\cdot)\|_{L^\infty}=O(t^{-\delta/2}),\quad t\to 0,\qquad \|P(t;\cdot,\cdot)\|_{L^\infty}=O(t^{-D/2}),\quad t\to\infty, $$ then it is natural to call the exponents $\delta$ and $D$ the local dimension and the dimension at infinity, respectively. The character of spectral estimates depends on a relation between these dimensions. The case where $\delta$, which has been insufficiently studied, is analyzed. Applications to operators on combinatorial and metric graphs are considered.
Keywords: eigenvalue estimates, Schrödinger operator, metric graph, dimension at infinity.
Mots-clés : local dimension
@article{FAA_2010_44_4_a2,
     author = {G. V. Rozenblum and M. Z. Solomyak},
     title = {On {Spectral} {Estimates} for {Schr\"odinger-Type} {Operators:} {The} {Case} of {Small} {Local} {Dimension}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {21--33},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a2/}
}
TY  - JOUR
AU  - G. V. Rozenblum
AU  - M. Z. Solomyak
TI  - On Spectral Estimates for Schr\"odinger-Type Operators: The Case of Small Local Dimension
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 21
EP  - 33
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a2/
LA  - ru
ID  - FAA_2010_44_4_a2
ER  - 
%0 Journal Article
%A G. V. Rozenblum
%A M. Z. Solomyak
%T On Spectral Estimates for Schr\"odinger-Type Operators: The Case of Small Local Dimension
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 21-33
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a2/
%G ru
%F FAA_2010_44_4_a2
G. V. Rozenblum; M. Z. Solomyak. On Spectral Estimates for Schr\"odinger-Type Operators: The Case of Small Local Dimension. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 4, pp. 21-33. http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a2/

[1] I. Berg, I. Lefstrem, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[2] M. Sh. Birman, “O spektre singulyarnykh granichnykh zadach”, Matem. sb., 55:2 (1961), 125–174 | MR | Zbl

[3] M. Sh. Birman, M. Z. Solomyak, “Kolichestvennyi analiz v teoremakh vlozheniya Soboleva i prilozheniya k spektralnoi teorii”, Desyataya matematicheskaya shkola, Institut matematiki AN USSR, Kiev, 1974 | Zbl

[4] M. Sh. Birman, M. Z. Solomyak, Spectral theory of selfadjoint operators in Hilbert space, D. Reidel Publishing Co., Dordrecht, 1987 | MR

[5] M. Sh. Birman, M. Z. Solomyak, “Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations”, Adv. Soviet Math., 7, Amer. Math. Soc., Providence, RI, 1991, 1–55 | MR

[6] T. Coulhon, A. Grigoryan, “Random walks on graphs with regular volume growth”, Geom. Funct. Anal., 8:4 (1998), 656–701 | DOI | MR | Zbl

[7] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[8] A. Grigoryan, J. Hu, “Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces”, Invent. Math., 174:1 (2008), 81–126 | DOI | MR

[9] F. Kharari, Teoriya grafov, Mir, M., 1973 ; УРСС, М., 2003 | MR

[10] S. Molchanov, B. Vainberg, “On general Cwikel–Lieb–Rozenblum and Lieb–Thirring inequalities”, Around the Research of Vladimir Maz'ya III, Int. Math. Ser., 13, Springer-Verlag, New York, 2010, 201–246 | DOI | MR | Zbl

[11] K. Naimark, M. Solomyak, “Regular and pathological eigenvalue behaviour for the equation $-\lambda u''=Vu$ on the semiaxis”, J. of Functional Analysis, 151:2 (1997), 504–530 | DOI | MR | Zbl

[12] K. Naimark, M. Solomyak, “Eigenvalue estimates for the weighted Laplacian on metric trees”, Proc. London Math. Soc., 80:3 (2000), 690–724 | DOI | MR | Zbl

[13] G. Rozenblyum, M. Solomyak, “Otsenka TsLR dlya generatorov polozhitelnykh polugrupp i polugrupp, dominiruemykh polozhitelnymi”, Algebra i analiz, 9:6 (1997), 214–236 | MR | Zbl

[14] G. Rozenblum, M. Solomyak, “Counting Schrödinger boundstates: semiclassics and beyond”, Sobolev Spaces in Mathematics. II. Applications in Analysis and Partial Differential Equations, Int. Math. Ser., 9, Springer-Verlag, New York, 2009, 329–354 | DOI | MR

[15] G. Rozenblyum, M. Solomyak, “Ob otsenkakh spektra dlya operatora Shrëdingera na $\mathbb{Z}^d$, $d\ge3$”, Probl. matem. analiza, 41, 2009, 107–126

[16] L. Saloff-Coste, “Sobolev inequalities in familiar and unfamiliar settings”, Sobolev Spaces in Mathematics. I, Int. Math. Ser., 8, Springer-Verlag, New York, 2009, 299–343 | DOI | MR | Zbl

[17] N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and Geometry on Groups, Cambridge University Press, Cambridge, 1992 | MR | Zbl