Homogenization in the Scattering Problem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 4, pp. 2-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

The scattering problem is studied, which is described by the equation $(-\Delta_x+q(x,x/\varepsilon)-E)\psi=f(x)$, where $\psi=\psi(x,\varepsilon)\in\mathbb{C}$, $x\in\mathbb{R}^d$, $\varepsilon>0$, $E>0$, the function $q(x,y)$ is periodic with respect to $y$, and the function $f$ is compactly supported. The solution satisfying radiation conditions at infinity is considered, and its asymptotic behavior as $\varepsilon\to0$ is described. The asymptotic behavior of the scattering amplitude of a plane wave is also considered. It is shown that in principal order both the solution and the scattering amplitude are described by the homogenized equation with potential $$ \hat{q}(x)=\frac1{|\Omega|}\int_\Omega q(x,y)\,dy. $$
Keywords: scattering problem for the Schoedinger equation, two-scale dependence of potential on coordinates, homogenization, static load model.
@article{FAA_2010_44_4_a0,
     author = {V. S. Buslaev and A. A. Pozharskii},
     title = {Homogenization in the {Scattering} {Problem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {2--13},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a0/}
}
TY  - JOUR
AU  - V. S. Buslaev
AU  - A. A. Pozharskii
TI  - Homogenization in the Scattering Problem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 2
EP  - 13
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a0/
LA  - ru
ID  - FAA_2010_44_4_a0
ER  - 
%0 Journal Article
%A V. S. Buslaev
%A A. A. Pozharskii
%T Homogenization in the Scattering Problem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 2-13
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a0/
%G ru
%F FAA_2010_44_4_a0
V. S. Buslaev; A. A. Pozharskii. Homogenization in the Scattering Problem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 4, pp. 2-13. http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a0/

[1] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[2] M. Sh. Birman, T. A. Suslina, “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl

[3] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR | Zbl

[4] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb{R}^d)$”, Algebra i analiz, 18:6 (2006), 1–130 | MR | Zbl

[5] D. I. Borisov, “Asimptotiki dlya reshenii ellipticheskikh sistem s bystro ostsilliruyuschimi koeffitsientami”, Algebra i analiz, 20:2 (2008), 19–42 | MR

[6] B. R. Vainberg, Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki, Izd-vo MGU, M., 1982 | MR | Zbl

[7] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR | Zbl

[8] O. A. Oleinik, G. A. Iosifyan, A. S. Shamaev, Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990 | MR

[9] E. Sanches-Palensiya, Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[10] L. Khërmander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 2, Mir, M., 1986