Homogenization in the Scattering Problem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 4, pp. 2-13

Voir la notice de l'article provenant de la source Math-Net.Ru

The scattering problem is studied, which is described by the equation $(-\Delta_x+q(x,x/\varepsilon)-E)\psi=f(x)$, where $\psi=\psi(x,\varepsilon)\in\mathbb{C}$, $x\in\mathbb{R}^d$, $\varepsilon>0$, $E>0$, the function $q(x,y)$ is periodic with respect to $y$, and the function $f$ is compactly supported. The solution satisfying radiation conditions at infinity is considered, and its asymptotic behavior as $\varepsilon\to0$ is described. The asymptotic behavior of the scattering amplitude of a plane wave is also considered. It is shown that in principal order both the solution and the scattering amplitude are described by the homogenized equation with potential $$ \hat{q}(x)=\frac1{|\Omega|}\int_\Omega q(x,y)\,dy. $$
Keywords: scattering problem for the Schoedinger equation, two-scale dependence of potential on coordinates, homogenization, static load model.
@article{FAA_2010_44_4_a0,
     author = {V. S. Buslaev and A. A. Pozharskii},
     title = {Homogenization in the {Scattering} {Problem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {2--13},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a0/}
}
TY  - JOUR
AU  - V. S. Buslaev
AU  - A. A. Pozharskii
TI  - Homogenization in the Scattering Problem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 2
EP  - 13
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a0/
LA  - ru
ID  - FAA_2010_44_4_a0
ER  - 
%0 Journal Article
%A V. S. Buslaev
%A A. A. Pozharskii
%T Homogenization in the Scattering Problem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 2-13
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a0/
%G ru
%F FAA_2010_44_4_a0
V. S. Buslaev; A. A. Pozharskii. Homogenization in the Scattering Problem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 4, pp. 2-13. http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a0/