On Stably $\mathcal{K}$-Monotone Banach Couples
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 65-69
Voir la notice de l'article provenant de la source Math-Net.Ru
The $\mathcal{K}$-monotonicity of Banach couples which is stable with respect to multiplication of weight by a constant is studied. Suppose that $E$ is a separable Banach lattice of two-sided sequences of reals such that $\|e_n\|=1$ ($n\in\mathbb{N}$), where $\{e_n\}_{n\in\mathbb{Z}}$ is the canonical basis. It is shown that $\vec{E}=(E,E(2^{-k}))$ is a stably $\mathcal{K}$-monotone couple if and only if $\vec{E}$ is $\mathcal{K}$-monotone and $E$ is shift-invariant. A non-trivial example of a shift-invariant separable Banach lattice $E$ such that the couple $\vec{E}$ is $\mathcal{K}$-monotone is constructed. This result contrasts with the following well-known theorem of Kalton: If $E$ is a separable symmetric sequence space such that the couple $\vec{E}$ is $\mathcal{K}$-monotone, then either $E=l_p$ ($1\le p\infty$) or $E=c_0$.
Keywords:
interpolation of operators, Peetre $\mathcal{K}$-functional, $\mathcal{K}$-monotone Banach couple, shift-invariant space.
@article{FAA_2010_44_3_a5,
author = {S. V. Astashkin and K. E. Tikhomirov},
title = {On {Stably} $\mathcal{K}${-Monotone} {Banach} {Couples}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {65--69},
publisher = {mathdoc},
volume = {44},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a5/}
}
S. V. Astashkin; K. E. Tikhomirov. On Stably $\mathcal{K}$-Monotone Banach Couples. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 65-69. http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a5/