On Stably $\mathcal{K}$-Monotone Banach Couples
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 65-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $\mathcal{K}$-monotonicity of Banach couples which is stable with respect to multiplication of weight by a constant is studied. Suppose that $E$ is a separable Banach lattice of two-sided sequences of reals such that $\|e_n\|=1$ ($n\in\mathbb{N}$), where $\{e_n\}_{n\in\mathbb{Z}}$ is the canonical basis. It is shown that $\vec{E}=(E,E(2^{-k}))$ is a stably $\mathcal{K}$-monotone couple if and only if $\vec{E}$ is $\mathcal{K}$-monotone and $E$ is shift-invariant. A non-trivial example of a shift-invariant separable Banach lattice $E$ such that the couple $\vec{E}$ is $\mathcal{K}$-monotone is constructed. This result contrasts with the following well-known theorem of Kalton: If $E$ is a separable symmetric sequence space such that the couple $\vec{E}$ is $\mathcal{K}$-monotone, then either $E=l_p$ ($1\le p\infty$) or $E=c_0$.
Keywords: interpolation of operators, Peetre $\mathcal{K}$-functional, $\mathcal{K}$-monotone Banach couple, shift-invariant space.
@article{FAA_2010_44_3_a5,
     author = {S. V. Astashkin and K. E. Tikhomirov},
     title = {On {Stably} $\mathcal{K}${-Monotone} {Banach} {Couples}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {65--69},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a5/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - K. E. Tikhomirov
TI  - On Stably $\mathcal{K}$-Monotone Banach Couples
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 65
EP  - 69
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a5/
LA  - ru
ID  - FAA_2010_44_3_a5
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A K. E. Tikhomirov
%T On Stably $\mathcal{K}$-Monotone Banach Couples
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 65-69
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a5/
%G ru
%F FAA_2010_44_3_a5
S. V. Astashkin; K. E. Tikhomirov. On Stably $\mathcal{K}$-Monotone Banach Couples. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 65-69. http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a5/

[1] Yu. A. Brudnyi, N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces, v. 1, North-Holland, Amsterdam, 1991 | MR | Zbl

[2] N. J. Kalton, Studia Math., 106:3 (1993), 233–277 | DOI | MR | Zbl

[3] M. Cwickel, P. Nilsson, Interpolation Spaces and Allied Topics in Analysis (Lund, 1984), Lecture Notes in Math., 1070, Springer-Verlag, Berlin, 1984, 54–65 | DOI | MR

[4] A. A. Sedaev, Dokl. AN SSSR, 209:4 (1973), 798–800 | MR | Zbl

[5] V. I. Dmitriev, S. G. Krein, V. I. Ovchinnikov, Geometriya lineinykh prostranstv i teoriya operatorov, Yaroslav. gos. un-t, Yaroslavl, 1977, 31–74 | MR | Zbl

[6] I. Berg, I. Lëfstrëm, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR | Zbl

[7] P. G. Casazza, T. J. Shura, Tsirelson's Space, Lecture Notes in Math., 1363, Springer-Verlag, Berlin, 1989, viii + 204 pp. | DOI | MR | Zbl

[8] T. Figiel, W. B. Johnson, Compositio Math., 29 (1974), 179–190 | MR | Zbl