Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2010_44_3_a3, author = {P. A. Terekhin}, title = {Frames in {Banach} {Spaces}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {50--62}, publisher = {mathdoc}, volume = {44}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a3/} }
P. A. Terekhin. Frames in Banach Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 50-62. http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a3/
[1] R. J. Duffin, A. C. Schaeffer, “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc., 72 (1952), 341–366 | DOI | MR | Zbl
[2] M. A. Naimark, “Spektralnye funktsii simmetricheskogo operatora”, Izv. AN SSSR, ser. matem., 4:3 (1940), 277–318 | Zbl
[3] P. G. Casazza, D. Han, D. R. Larson, “Frames for Banach spaces”, Contemp. Math., 247 (1999), 149–182 | DOI | MR | Zbl
[4] B. S. Kashin, T. Yu. Kulikova, “Zamechanie ob opisanii freimov obschego vida”, Matem. zametki, 72:6 (2002), 941–945 | DOI | MR | Zbl
[5] R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980 | MR
[6] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, SIAM, Philadelphia, PA, 1992 ; I. Dobeshi, Desyat lektsii po veivletam, RKhD, Izhevsk, 2001 | MR | Zbl
[7] O. Christensen, An Introduction to Frames and Riesz Bases, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, MA, 2003 | MR
[8] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005
[9] K. Gröchenig, “Describing functions: atomic decompositions versus frames”, Monatsh. Math., 112:1 (1991), 1–41 | DOI | MR
[10] D. Han, D. R. Larson, Frames, bases and group representations, Memoirs Amer. Math. Soc., 147, no. 697, 2000, x+94 pp. | DOI | MR
[11] P. G. Casazza, O. Christensen, D. T. Stoeva, “Frame expansions in separable Banach spaces”, J. Math. Anal. Appl., 307:2 (2005), 710–723 | DOI | MR | Zbl
[12] A. Aldroubi, Q. Sun, W.-S. Tang, “$p$-Frames and shift invariant subspaces of $L^p$”, J. Fourier Anal. Appl., 7:1 (2001), 1–21 | DOI | MR | Zbl
[13] O. Christensen, D. T. Stoeva, “$p$-Frames in separable Banach spaces”, Adv. Comput. Math., 18:2 (2003), 117–126 | DOI | MR | Zbl
[14] N. K. Bari, “O bazisakh v gilbertovom prostranstve”, DAN SSSR, 54 (1946), 383–386
[15] N. K. Bari, “Biortogonalnye sistemy i bazisy v gilbertovom prostranstve”, Matematika IV, Uchen. zap. MGU, 148, 1951, 69–107 | MR
[16] P. A. Terekhin, “Freimy v banakhovom prostranstve i ikh prilozheniya k postroeniyu vspleskov”, Issledovaniya po algebre, teorii chisel, funktsionalnomu analizu i smezhnym voprosam, Sb. nauch. trudov, vyp. 2, Izd-vo Sarat. un-ta, Saratov, 2003, 65–81
[17] P. A. Terekhin, “Sistemy predstavleniya i proektsii bazisov”, Matem. zametki, 75:6 (2004), 944–947 | DOI | MR | Zbl
[18] P. A. Terekhin, “Banakhovy freimy v zadache affinnogo sinteza”, Matem. sb., 200:9 (2009), 127–146 | DOI | MR | Zbl
[19] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I: Sequence Spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR | Zbl
[20] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl
[21] P. A. Terekhin, “Neravenstva dlya komponentov summiruemykh funktsii i ikh predstavleniya po elementam sistemy szhatii i sdvigov”, Izv. vuzov, matem., 1999, no. 8, 74–81 | MR | Zbl
[22] A. Pelczynski, “Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis”, Studia Math., 40 (1971), 239–242 | DOI | MR
[23] W. B. Johnson, H. P. Rosenthal, M. Zippin, “On bases, finite dimensional decompositions and weaker structure in Banach spaces”, Israel J. Math., 9 (1971), 488–506 | DOI | MR | Zbl
[24] P. L. Ulyanov, “Predstavlenie funktsii ryadami i klassy $\varphi(L)$”, UMN, 27:2 (1972), 3–52 | MR | Zbl
[25] K. S. Kazarian, R. E. Zink, “Subsystems of the Schauder system that are quasibases for $L^p[0,1]$, $1\le p\infty$”, Proc. Amer. Math. Soc., 126:10 (1998), 2883–2893 | DOI | MR | Zbl
[26] T. P. Lukashenko, “O svoistvakh ortorekursivnykh razlozhenii po neortogonalnym sistemam”, Vestn. Mosk. un-ta, ser. 1 matem. mekh., 2001, no. 1, 6–10 | MR | Zbl
[27] V. P. Odinets, M. Ya. Yakubson, Proektory i bazisy v normirovannykh prostranstvakh, URSS, M., 2004 | MR | Zbl