Invariant Functionals for Random Matrices
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 84-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to the study of the Lyapunov exponents of random matrices is presented. It is proved that, under general assumptions, any family of nonnegative matrices possesses a continuous concave positively homogeneous invariant functional (“antinorm”) on $\mathbb{R}^d_+$. Moreover, the coefficient corresponding to an invariant antinorm equals the largest Lyapunov exponent. All conditions imposed on the matrices are shown to be essential. As a corollary, a sharp estimate for the asymptotics of the mathematical expectation for logarithms of norms of matrix products and of their spectral radii is derived. New upper and lower bounds for Lyapunov exponents are obtained. This leads to an algorithm for computing Lyapunov exponents. The proofs of the main results are outlined.
Mots-clés : random matrices
Keywords: Lyapunov exponents, invariant functions, concave homogeneous functionals, fixed point, asymptotics.
@article{FAA_2010_44_3_a10,
     author = {V. Yu. Protasov},
     title = {Invariant {Functionals} for {Random} {Matrices}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {84--88},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a10/}
}
TY  - JOUR
AU  - V. Yu. Protasov
TI  - Invariant Functionals for Random Matrices
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 84
EP  - 88
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a10/
LA  - ru
ID  - FAA_2010_44_3_a10
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%T Invariant Functionals for Random Matrices
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 84-88
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a10/
%G ru
%F FAA_2010_44_3_a10
V. Yu. Protasov. Invariant Functionals for Random Matrices. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 84-88. http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a10/

[1] H. Furstenberg, H. Kesten, Ann. Math. Statist., 31 (1960), 457–469 | DOI | MR | Zbl

[2] V. N. Tutubalin, TVP, 10:1 (1965), 19–32 | MR | Zbl

[3] V. I. Oseledets, Trudy MMO, 19, 1968, 179–210 | MR | Zbl

[4] E. Le Page, Probability Measures on Groups (Oberwolfach, 1981), Lecture Notes in Math., 928, 1982, 258–303 | DOI | MR | Zbl

[5] W. C. Watkins, Contemp. Math., 50 (1986), 5–29 | DOI | MR

[6] I. Ya. Goldsheid, G. A. Margulis, UMN, 44:5 (1989), 13–60 | MR | Zbl

[7] E. S. Key, J. Theor. Probab., 3:3 (1990), 477–488 | DOI | MR | Zbl

[8] Y. Peres, Ann. Inst. H. Poincaré Probab. Statist., 28:1 (1992), 131–148 | MR | Zbl

[9] H. Hennon, Ann. Probab., 25:4 (1997), 1545–1587 | DOI | MR

[10] V. Yu. Protasov, Izv. RAN, ser. matem., 68:3 (2004), 139–180 | DOI | MR | Zbl

[11] N. E. Barabanov, Avtom. i telemekh., 1988, no. 2, 40–46 | MR | Zbl

[12] V. Yu. Protasov, Linear Algebra Appl., 428:10 (2008), 2339–2356 | DOI | MR | Zbl