Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2010_44_3_a0, author = {A. I. Danilenko and V. V. Ryzhikov}, title = {Spectral {Multiplicities} of {Infinite} {Measure} {Preserving} {Transformations}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--13}, publisher = {mathdoc}, volume = {44}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a0/} }
TY - JOUR AU - A. I. Danilenko AU - V. V. Ryzhikov TI - Spectral Multiplicities of Infinite Measure Preserving Transformations JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2010 SP - 1 EP - 13 VL - 44 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a0/ LA - ru ID - FAA_2010_44_3_a0 ER -
A. I. Danilenko; V. V. Ryzhikov. Spectral Multiplicities of Infinite Measure Preserving Transformations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 1-13. http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a0/
[1] J. Aaronson, An Introduction to Infinite Ergodic Theory, Amer. Math. Soc., Providence, RI, 1997 | MR
[2] T. Adams, N. Friedman, C. E. Silva, “Rank-one power weak mixing non-singular transformations”, Ergodic Theory Dynam. Systems, 21:5 (2001), 1321–1332 | DOI | MR
[3] O. N. Ageev, “On ergodic transformations with homogeneous spectrum”, J. Dynam. Control Systems, 5:1 (1999), 149–152 | DOI | MR | Zbl
[4] O. N. Ageev, “The homogeneous spectrum problem in ergodic theory”, Invent. Math., 160:2 (2005), 417–446 | DOI | MR | Zbl
[5] O. N. Ageev, “Mixing with staircase multiplicity function”, Ergodic Theory Dynam. Systems, 28:6 (2008), 1687–1700 | DOI | MR | Zbl
[6] A. M. Vershik, I. P. Kornfeld, “Obschaya ergodicheskaya teoriya grupp preobrazovanii s invariantnoi meroi. Glava 4. Periodicheskie approksimatsii i ikh primeneniya. Ergodicheskie teoremy. Spektralnaya i entropiinaya teoriya obschikh grupp preobrazovanii”, Dinamicheskie sistemy – 2, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 2, VINITI, M., 1985, 70–89 | MR
[7] A. I. Danilenko, “Funny rank one weak mixing for nonsingular Abelian actions”, Israel J. Math., 121 (2001), 29–54 | DOI | MR | Zbl
[8] A. I. Danilenko, “Explicit solution of Rokhlin's problem on homogeneous spectrum and applications”, Ergodic Theory Dynam. Systems, 26:5 (2006), 1467–1490 | DOI | MR | Zbl
[9] A. I. Danilenko, “$(C,F)$-actions in ergodic theory”, Geometry and Dynamics of Groups and Spaces, Progr. Math., 265, Birkhauser, Basel, 2008, 325–351 | DOI | MR | Zbl
[10] A. I. Danilenko, “On new spectral multiplicities for ergodic maps”, Studia Math., 197:1 (2010), 57–68 | DOI | MR | Zbl
[11] A. I. Danilenko, C. E. Silva, “Multiple and polynomial recurrence for Abelian actions in infinite measure”, J. London Math. Soc., 69:1 (2004), 183–200 | DOI | MR | Zbl
[12] A. I. Danilenko, C. E. Silva, “Ergodic theory: non-singular transformations”, Encyclopedia of Complexity and Systems Science, Springer-Verlag, 2009, 3055–3083 | DOI | MR
[13] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, NJ, 1981 | MR | Zbl
[14] G. R. Goodson, J. Kwiatkowski, M. Lemańczyk, P. Liardet, “On the multiplicity function of ergodic group extensions of rotations”, Studia Math., 102:2 (1992), 157–174 | DOI | MR | Zbl
[15] K. Inoue, “Isometric extensions and multiple recurrence of infinite measure preserving systems”, Israel J. Math., 140 (2004), 245–252 | DOI | MR
[16] A. del Junco, “A simple map with no prime factors”, Israel J. Math., 104 (1998), 301–320 | DOI | MR | Zbl
[17] S. Kakutani, W. Parry, “Infinite measure preserving transformations with mixing”, Bull. Amer. Math. Soc., 69 (1963), 752–756 | DOI | MR | Zbl
[18] A. B. Katok, Combinatorial constructions in ergodic theory and dynamics, University Lecture Series, 30, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl
[19] A. Katok, M. Lemańczyk, “Some new cases of realization of spectral multiplicity function for ergodic transformations”, Fund. Math., 206 (2009), 185–215 | DOI | MR | Zbl
[20] J. Kwiatkowski (jr), M. Lemańczyk, “On the multiplicity function of ergodic group extensions. II”, Studia Math., 116:3 (1995), 207–215 | DOI | MR | Zbl
[21] V. I. Oseledets, “O spektre ergodicheskikh avtomorfizmov”, Dokl. AN SSSR, 168 (1966), 1009–1011 | MR | Zbl
[22] E. A. Robinson, “Ergodic measure-preserving transformations with arbitrary finite spectral multiplicities”, Invent. Math., 72:2 (1983), 299–314 | DOI | MR | Zbl
[23] E. A. Robinson, “Transformations with highly nonhomogeneous spectrum of finite multiplicity”, Israel J. Math., 56 (1986), 75–88 | DOI | MR | Zbl
[24] V. V. Ryzhikov, “Transformations having homogeneous spectra”, J. Dynam. Control Systems, 5:1 (1999), 145–148 | DOI | MR | Zbl
[25] V. V. Ryzhikov, “Slabye predely stepenei, prostoi spektr simmetricheskikh proizvedenii i peremeshivayuschie konstruktsii ranga 1”, Matem. sb., 198:5 (2007), 137–159 | DOI | MR | Zbl
[26] V. V. Ryzhikov, “Spektralnye kratnosti i asimptoticheskie operatornye svoistva deistvii s invariantnoi meroi”, Matem. sb., 200:12 (2009), 107–120 | DOI | MR | Zbl
[27] K. Schmidt, Cocycles on ergodic transformation groups, Macmillan Lectures in Math., 1, Macmillan Company of India, Delhi, 1977 | MR | Zbl
[28] A. M. Stepin, “Spektralnye svoistva tipichnykh dinamicheskikh sistem”, Izv. AN SSSR, ser. matem., 50:4 (1986), 801–834 | MR | Zbl