Spectral Multiplicities of Infinite Measure Preserving Transformations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Each set $E\subset\mathbb{N}$ is realized as the set of essential values of the multiplicity function of the Koopman operator for an ergodic conservative infinite measure preserving transformation.
Mots-clés : ergodic transformation
Keywords: $\sigma$-finite measure, spectral multiplicity.
@article{FAA_2010_44_3_a0,
     author = {A. I. Danilenko and V. V. Ryzhikov},
     title = {Spectral {Multiplicities} of {Infinite} {Measure} {Preserving} {Transformations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a0/}
}
TY  - JOUR
AU  - A. I. Danilenko
AU  - V. V. Ryzhikov
TI  - Spectral Multiplicities of Infinite Measure Preserving Transformations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 1
EP  - 13
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a0/
LA  - ru
ID  - FAA_2010_44_3_a0
ER  - 
%0 Journal Article
%A A. I. Danilenko
%A V. V. Ryzhikov
%T Spectral Multiplicities of Infinite Measure Preserving Transformations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 1-13
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a0/
%G ru
%F FAA_2010_44_3_a0
A. I. Danilenko; V. V. Ryzhikov. Spectral Multiplicities of Infinite Measure Preserving Transformations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 1-13. http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a0/

[1] J. Aaronson, An Introduction to Infinite Ergodic Theory, Amer. Math. Soc., Providence, RI, 1997 | MR

[2] T. Adams, N. Friedman, C. E. Silva, “Rank-one power weak mixing non-singular transformations”, Ergodic Theory Dynam. Systems, 21:5 (2001), 1321–1332 | DOI | MR

[3] O. N. Ageev, “On ergodic transformations with homogeneous spectrum”, J. Dynam. Control Systems, 5:1 (1999), 149–152 | DOI | MR | Zbl

[4] O. N. Ageev, “The homogeneous spectrum problem in ergodic theory”, Invent. Math., 160:2 (2005), 417–446 | DOI | MR | Zbl

[5] O. N. Ageev, “Mixing with staircase multiplicity function”, Ergodic Theory Dynam. Systems, 28:6 (2008), 1687–1700 | DOI | MR | Zbl

[6] A. M. Vershik, I. P. Kornfeld, “Obschaya ergodicheskaya teoriya grupp preobrazovanii s invariantnoi meroi. Glava 4. Periodicheskie approksimatsii i ikh primeneniya. Ergodicheskie teoremy. Spektralnaya i entropiinaya teoriya obschikh grupp preobrazovanii”, Dinamicheskie sistemy – 2, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 2, VINITI, M., 1985, 70–89 | MR

[7] A. I. Danilenko, “Funny rank one weak mixing for nonsingular Abelian actions”, Israel J. Math., 121 (2001), 29–54 | DOI | MR | Zbl

[8] A. I. Danilenko, “Explicit solution of Rokhlin's problem on homogeneous spectrum and applications”, Ergodic Theory Dynam. Systems, 26:5 (2006), 1467–1490 | DOI | MR | Zbl

[9] A. I. Danilenko, “$(C,F)$-actions in ergodic theory”, Geometry and Dynamics of Groups and Spaces, Progr. Math., 265, Birkhauser, Basel, 2008, 325–351 | DOI | MR | Zbl

[10] A. I. Danilenko, “On new spectral multiplicities for ergodic maps”, Studia Math., 197:1 (2010), 57–68 | DOI | MR | Zbl

[11] A. I. Danilenko, C. E. Silva, “Multiple and polynomial recurrence for Abelian actions in infinite measure”, J. London Math. Soc., 69:1 (2004), 183–200 | DOI | MR | Zbl

[12] A. I. Danilenko, C. E. Silva, “Ergodic theory: non-singular transformations”, Encyclopedia of Complexity and Systems Science, Springer-Verlag, 2009, 3055–3083 | DOI | MR

[13] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, NJ, 1981 | MR | Zbl

[14] G. R. Goodson, J. Kwiatkowski, M. Lemańczyk, P. Liardet, “On the multiplicity function of ergodic group extensions of rotations”, Studia Math., 102:2 (1992), 157–174 | DOI | MR | Zbl

[15] K. Inoue, “Isometric extensions and multiple recurrence of infinite measure preserving systems”, Israel J. Math., 140 (2004), 245–252 | DOI | MR

[16] A. del Junco, “A simple map with no prime factors”, Israel J. Math., 104 (1998), 301–320 | DOI | MR | Zbl

[17] S. Kakutani, W. Parry, “Infinite measure preserving transformations with mixing”, Bull. Amer. Math. Soc., 69 (1963), 752–756 | DOI | MR | Zbl

[18] A. B. Katok, Combinatorial constructions in ergodic theory and dynamics, University Lecture Series, 30, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl

[19] A. Katok, M. Lemańczyk, “Some new cases of realization of spectral multiplicity function for ergodic transformations”, Fund. Math., 206 (2009), 185–215 | DOI | MR | Zbl

[20] J. Kwiatkowski (jr), M. Lemańczyk, “On the multiplicity function of ergodic group extensions. II”, Studia Math., 116:3 (1995), 207–215 | DOI | MR | Zbl

[21] V. I. Oseledets, “O spektre ergodicheskikh avtomorfizmov”, Dokl. AN SSSR, 168 (1966), 1009–1011 | MR | Zbl

[22] E. A. Robinson, “Ergodic measure-preserving transformations with arbitrary finite spectral multiplicities”, Invent. Math., 72:2 (1983), 299–314 | DOI | MR | Zbl

[23] E. A. Robinson, “Transformations with highly nonhomogeneous spectrum of finite multiplicity”, Israel J. Math., 56 (1986), 75–88 | DOI | MR | Zbl

[24] V. V. Ryzhikov, “Transformations having homogeneous spectra”, J. Dynam. Control Systems, 5:1 (1999), 145–148 | DOI | MR | Zbl

[25] V. V. Ryzhikov, “Slabye predely stepenei, prostoi spektr simmetricheskikh proizvedenii i peremeshivayuschie konstruktsii ranga 1”, Matem. sb., 198:5 (2007), 137–159 | DOI | MR | Zbl

[26] V. V. Ryzhikov, “Spektralnye kratnosti i asimptoticheskie operatornye svoistva deistvii s invariantnoi meroi”, Matem. sb., 200:12 (2009), 107–120 | DOI | MR | Zbl

[27] K. Schmidt, Cocycles on ergodic transformation groups, Macmillan Lectures in Math., 1, Macmillan Company of India, Delhi, 1977 | MR | Zbl

[28] A. M. Stepin, “Spektralnye svoistva tipichnykh dinamicheskikh sistem”, Izv. AN SSSR, ser. matem., 50:4 (1986), 801–834 | MR | Zbl