One-dimensional Schr\"odinger operator with $\delta$-interactions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 87-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

The one-dimensional Schrödinger operator $\mathrm{H}_{X,\alpha}$ with $\delta$-interactions on a discrete set is studied in the framework of the extension theory. Applying the technique of boundary triplets and the corresponding Weyl functions, we establish a connection of these operators with a certain class of Jacobi matrices. The discovered connection enables us to obtain conditions for the self-adjointness, lower semiboundedness, discreteness of the spectrum, and discreteness of the negative part of the spectrum of the operator $\mathrm{H}_{X,\alpha}$.
Keywords: Schrödinger operator, point interactions, self-adjointness, lower semiboundedness, discreteness.
@article{FAA_2010_44_2_a8,
     author = {A. S. Kostenko and M. M. Malamud},
     title = {One-dimensional {Schr\"odinger} operator with $\delta$-interactions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {87--91},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a8/}
}
TY  - JOUR
AU  - A. S. Kostenko
AU  - M. M. Malamud
TI  - One-dimensional Schr\"odinger operator with $\delta$-interactions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 87
EP  - 91
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a8/
LA  - ru
ID  - FAA_2010_44_2_a8
ER  - 
%0 Journal Article
%A A. S. Kostenko
%A M. M. Malamud
%T One-dimensional Schr\"odinger operator with $\delta$-interactions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 87-91
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a8/
%G ru
%F FAA_2010_44_2_a8
A. S. Kostenko; M. M. Malamud. One-dimensional Schr\"odinger operator with $\delta$-interactions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 87-91. http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a8/

[1] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, AMS Chelsea Publ., Providence, RI, 2005 | MR | Zbl

[2] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR

[3] J. Brasche, J. Math. Phys., 26:4 (1985), 621–626 | DOI | MR | Zbl

[4] D. Buschmann, G. Stolz, J. Weidmann, J. Reine Angew. Math., 467 (1995), 169–186 | MR | Zbl

[5] V. A. Derkach, M. M. Malamud, J. Funct. Anal., 95:1 (1991), 1–95 | DOI | MR | Zbl

[6] F. Gesztesy, W. Kirsch, J. Reine Angew. Math., 362 (1985), 27–50 | MR

[7] V. I. Gorbachuk, M. L. Gorbachuk, Granichnye zadachi dlya operatorno-differentsialnykh uravnenii, Naukova dumka, Kiev, 1984 | MR | Zbl

[8] R. S. Ismagilov, UMN, 18:5 (1963), 161–166 | MR | Zbl

[9] R. S. Ismagilov, Matem. zametki, 37:6 (1985), 869–879 | MR | Zbl

[10] A. Kostenko, M. Malamud, J. Differential Equations, 249:2 (2010), 253–304 | DOI | MR | Zbl

[11] A. G. Kostyuchenko, K. A. Mirzoev, Funkts. analiz i ego pril., 35:4 (2001), 32–37 | DOI | MR | Zbl

[12] A. N. Kochubei, Ukr. matem. zh., 41:10 (1989), 1391–1395 | MR

[13] M. M. Malamud, H. Neidhardt, On the unitary equivalence of absolutely continuous parts of self-adjoint extensions, arXiv: 0907.0650v1

[14] V. A. Mikhailets, Dokl. RAN, 335:4 (1994), 421–423 | MR

[15] V. A. Mikhailets, Funkts. analiz i ego pril., 28:4 (1994), 85–87 | MR | Zbl

[16] A. M. Savchuk, A. A. Shkalikov, Trudy MMO, 64, 2003, 159–219 | MR

[17] C. Shubin Christ, G. Stolz, J. Math. Anal. Appl., 184:3 (1994), 491–516 | DOI | MR | Zbl

[18] R. Szwarc, Intern. Series of Numerical Math., 142, Birkhäuser, Basel, 2003, 255–262 | Zbl