One-dimensional Schr\"odinger operator with $\delta$-interactions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 87-91

Voir la notice de l'article provenant de la source Math-Net.Ru

The one-dimensional Schrödinger operator $\mathrm{H}_{X,\alpha}$ with $\delta$-interactions on a discrete set is studied in the framework of the extension theory. Applying the technique of boundary triplets and the corresponding Weyl functions, we establish a connection of these operators with a certain class of Jacobi matrices. The discovered connection enables us to obtain conditions for the self-adjointness, lower semiboundedness, discreteness of the spectrum, and discreteness of the negative part of the spectrum of the operator $\mathrm{H}_{X,\alpha}$.
Keywords: Schrödinger operator, point interactions, self-adjointness, lower semiboundedness, discreteness.
@article{FAA_2010_44_2_a8,
     author = {A. S. Kostenko and M. M. Malamud},
     title = {One-dimensional {Schr\"odinger} operator with $\delta$-interactions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {87--91},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a8/}
}
TY  - JOUR
AU  - A. S. Kostenko
AU  - M. M. Malamud
TI  - One-dimensional Schr\"odinger operator with $\delta$-interactions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 87
EP  - 91
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a8/
LA  - ru
ID  - FAA_2010_44_2_a8
ER  - 
%0 Journal Article
%A A. S. Kostenko
%A M. M. Malamud
%T One-dimensional Schr\"odinger operator with $\delta$-interactions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 87-91
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a8/
%G ru
%F FAA_2010_44_2_a8
A. S. Kostenko; M. M. Malamud. One-dimensional Schr\"odinger operator with $\delta$-interactions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 87-91. http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a8/