One-dimensional Schr\"odinger operator with $\delta$-interactions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 87-91
Voir la notice de l'article provenant de la source Math-Net.Ru
The one-dimensional Schrödinger operator $\mathrm{H}_{X,\alpha}$ with $\delta$-interactions on a discrete set is studied in the framework of the extension theory. Applying the technique of boundary triplets and the corresponding Weyl functions, we establish a connection of these operators with a certain class of Jacobi matrices. The discovered connection enables us to obtain conditions for the self-adjointness, lower semiboundedness, discreteness of the spectrum, and discreteness of the negative part of the spectrum of the operator $\mathrm{H}_{X,\alpha}$.
Keywords:
Schrödinger operator, point interactions, self-adjointness, lower semiboundedness, discreteness.
@article{FAA_2010_44_2_a8,
author = {A. S. Kostenko and M. M. Malamud},
title = {One-dimensional {Schr\"odinger} operator with $\delta$-interactions},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {87--91},
publisher = {mathdoc},
volume = {44},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a8/}
}
TY - JOUR AU - A. S. Kostenko AU - M. M. Malamud TI - One-dimensional Schr\"odinger operator with $\delta$-interactions JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2010 SP - 87 EP - 91 VL - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a8/ LA - ru ID - FAA_2010_44_2_a8 ER -
A. S. Kostenko; M. M. Malamud. One-dimensional Schr\"odinger operator with $\delta$-interactions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 87-91. http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a8/