Simplicity of the branching of representations of the groups GL$(n,q)$ the parabolic restriction: an elementary proof
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 82-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the branching of representations of the groups $\operatorname{GL}(n,q)$ under the parabolic restriction is simple. Apparently, an elementary proof of this important fact has not been found so far. We present such a proof, which uses a method not standard for the representation theory of finite groups.
Keywords: representation of $\operatorname{GL}(n,q)$, simplicity of branching, parabolic restriction.
@article{FAA_2010_44_2_a7,
     author = {E. E. Goryachko},
     title = {Simplicity of the branching of representations of the groups {GL}$(n,q)$ the parabolic restriction: an elementary proof},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {82--87},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a7/}
}
TY  - JOUR
AU  - E. E. Goryachko
TI  - Simplicity of the branching of representations of the groups GL$(n,q)$ the parabolic restriction: an elementary proof
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 82
EP  - 87
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a7/
LA  - ru
ID  - FAA_2010_44_2_a7
ER  - 
%0 Journal Article
%A E. E. Goryachko
%T Simplicity of the branching of representations of the groups GL$(n,q)$ the parabolic restriction: an elementary proof
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 82-87
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a7/
%G ru
%F FAA_2010_44_2_a7
E. E. Goryachko. Simplicity of the branching of representations of the groups GL$(n,q)$ the parabolic restriction: an elementary proof. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 82-87. http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a7/

[1] I. N. Bernshtein, A. V. Zelevinskii, UMN, 31:3 (1976), 5–70 | MR

[2] A. M. Vershik, S. V. Kerov, Funkts. analiz i ego pril., 32:3 (1998), 3–10 | DOI | MR | Zbl

[3] A. M. Vershik, A. Yu. Okunkov, Zap. nauchn. sem. POMI, 307, 2004, 57–98 | MR

[4] E. E. Goryachko, Zap. nauchn. sem. POMI, 331, 2006, 43–59 | MR | Zbl

[5] E. E. Goryachko, Zap. nauchn. sem. POMI, 373, 2009, 124–133 | MR

[6] D. K. Faddeev, Zap. nauchn. sem. LOMI, 46, 1974, 64–88 | MR | Zbl

[7] A. Aizenbud, D. Gourevitch, “Multiplicity free Jacquet modules”, Canad. Math. Bull. (to appear) , arXiv: 0910.3659v1 | MR

[8] I. M. Gelfand, D. A. Kajdan, Lie Groups and Their Representations, Akad. Kiadó, Budapest, 1975, 95–118 | MR

[9] J. A. Green, Trans. Amer. Math. Soc., 80:2 (1955), 402–447 | DOI | MR | Zbl

[10] A. M. Vershik, Asymptotic Combinatorics with Applications to Mathematical Physics, Lecture Notes in Math., 1815, Springer-Verlag, Berlin, 2003, 161–182 | DOI | MR | Zbl

[11] A. M. Vershik, S. V. Kerov, Zap. nauchn. sem. POMI, 344, 2007, 5–36 | MR

[12] A. V. Zelevinsky, Representations of Finite Classical Groups. A Hopf algebra approach, Lecture Notes in Math., 869, Springer-Verlag, Berlin–New York, 1981 | DOI | MR | Zbl