Orthoscalar quiver representations corresponding to extended Dynkin graphs in the category of Hilbert spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 57-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that finitely representable quivers correspond to Dynkin graphs and tame quivers correspond to extended Dynkin graphs. In an earlier paper, the authors generalized some of these results to locally scalar (later renamed to orthoscalar) quiver representations in Hilbert spaces; in particular, an analog of the Gabriel theorem was proved. In this paper, we study the relationships between indecomposable representations in the category of orthoscalar representations and indecomposable representations in the category of all quiver representations. For the quivers corresponding to extended Dynkin graphs, the indecomposable orthoscalar representations are classified up to unitary equivalence.
Keywords: quiver, orthoscalar representation, Hilbert space, extended Dynkin graphs, unitary equivalence.
@article{FAA_2010_44_2_a5,
     author = {S. A. Kruglyak and L. A. Nazarova and A. V. Roiter},
     title = {Orthoscalar quiver representations corresponding to extended {Dynkin} graphs in the category of {Hilbert} spaces},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {57--73},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a5/}
}
TY  - JOUR
AU  - S. A. Kruglyak
AU  - L. A. Nazarova
AU  - A. V. Roiter
TI  - Orthoscalar quiver representations corresponding to extended Dynkin graphs in the category of Hilbert spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 57
EP  - 73
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a5/
LA  - ru
ID  - FAA_2010_44_2_a5
ER  - 
%0 Journal Article
%A S. A. Kruglyak
%A L. A. Nazarova
%A A. V. Roiter
%T Orthoscalar quiver representations corresponding to extended Dynkin graphs in the category of Hilbert spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 57-73
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a5/
%G ru
%F FAA_2010_44_2_a5
S. A. Kruglyak; L. A. Nazarova; A. V. Roiter. Orthoscalar quiver representations corresponding to extended Dynkin graphs in the category of Hilbert spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 57-73. http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a5/

[1] A. V. Roiter, “Matrix problems”, Proc. ICM (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, 319–322 | MR

[2] S. A. Kruglyak, A. V. Roiter, “Lokalno-skalyarnye predstavleniya grafov v kategorii gilbertovykh prostranstv”, Funkts. analiz i ego pril., 39:2 (2005), 13–30 | DOI | MR | Zbl

[3] P. Gabriel, “Unzerlegbare Darstellungen. I”, Manuscripta Math., 6 (1972), 71–107 | DOI | MR

[4] S. A. Kruglyak, V. I. Rabanovich, Yu. S. Samoilenko, “O summakh proektorov”, Funkts. analiz i ego pril., 36:3 (2002), 20–35 | DOI | MR | Zbl

[5] V. L. Ostrovskii, Yu. S. Samoilenko, “Pro spektralni teoremi dlya simei liniino pov'yazanikh samosopryazhenikh operatoriv iz zadanimi spektrami, scho asotsiiovani z rozshirenimi grafami Dinkina”, Ukr. matem. zh., 58:11 (2006), 1556–1570 | MR

[6] S. Albeverio, V. Ostrovskyi, Yu. Samoilenko, “On functions on graphs and representations of a certain class of $*$-algebras”, J. Algebra, 308:2 (2007), 567–582 | DOI | MR | Zbl

[7] S. A. Kruglyak, L. A. Nazarova, A. V. Roiter, “Ortoskalyarnye predstavleniya kolchanov v kategorii gilbertovykh prostranstv”, Zap. nauchn. sem. POMI, 338, 2006, 180–201 | MR | Zbl

[8] A. V. Roiter, “Boksy s involyutsiei”, Predstavleniya i kvadratichnye formy, In-t matematiki AN USSR, Kiev, 1979, 124–126, 155 | MR

[9] Zh. Diksme, $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR

[10] V. G. Kac, “Infinite root systems, representations of graphs and invariant theory, II”, J. Algebra, 78 (1982), 141–162 | DOI | MR | Zbl

[11] I. M. Gelfand, V. A. Ponomarev, “Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space”, Hilbert Space Operators and Operator Algebra, Proc. Intern. Conf. (Tihany, Hungary, 1970), Colloq. Math. Soc. J. Bolyai, 5, 1972, 163–237 | MR | Zbl

[12] I. K. Redchuk, A. V. Roiter, “Singulyarnye lokalno-skalyarnye predstavleniya kolchanov v gilbertovykh prostranstvakh i razdelyayuschie funktsii”, Ukr. matem. zh., 56:6 (2004), 796–809 | MR | Zbl

[13] W. Crawley-Boevey, Lectures on Representations of Quivers, Preprojective Algebras and Deformations of Quotient Singularities http://www.maths.leeds.ac.uk/~pmtwc/dmvlecs.pdf

[14] V. L. Ostrovskyi, Yu. S. Samoilenko, “Introduction to the theory of representations of finitely presented *-algebras, I”, Rev. Math. Math. Phys., 11 (1999), 1–261 | DOI | MR | Zbl

[15] A. S. Mellit, “Kogda summa trekh chastichnykh otrazhenii ravna nulyu”, Ukr. matem. zh., 55:9 (2003), 1277–1283 | MR | Zbl

[16] V. L. Ostrovskii, “Zobrazhennya algebri, asotsiiovanoi z grafom Dinkina $\wt E_7$”, Ukr. matem. zh., 56:9 (2004), 1193–1204 | MR