On the Hersch--Payne--Schiffer inequalities for Steklov eigenvalues
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 33-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the Hersch–Payne–Schiffer isoperimetric inequality for the $n$th nonzero Steklov eigenvalue of a bounded simply connected planar domain is sharp for all $n\ge 1$. The equality is attained in the limit by a sequence of simply connected domains degenerating into a disjoint union of $n$ identical disks. Similar results are obtained for the product of two consecutive Steklov eigenvalues. We also give a new proof of the Hersch–Payne–Schiffer inequality for $n=2$ and show that it is strict in this case.
Keywords: Steklov eigenvalue problem, eigenvalue, isoperimetric inequality.
@article{FAA_2010_44_2_a3,
     author = {A. Girouard and I. V. Polterovich},
     title = {On the {Hersch--Payne--Schiffer} inequalities for {Steklov} eigenvalues},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {33--47},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a3/}
}
TY  - JOUR
AU  - A. Girouard
AU  - I. V. Polterovich
TI  - On the Hersch--Payne--Schiffer inequalities for Steklov eigenvalues
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 33
EP  - 47
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a3/
LA  - ru
ID  - FAA_2010_44_2_a3
ER  - 
%0 Journal Article
%A A. Girouard
%A I. V. Polterovich
%T On the Hersch--Payne--Schiffer inequalities for Steklov eigenvalues
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 33-47
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a3/
%G ru
%F FAA_2010_44_2_a3
A. Girouard; I. V. Polterovich. On the Hersch--Payne--Schiffer inequalities for Steklov eigenvalues. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 33-47. http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a3/

[1] M. S. Ashbaugh, R. D. Benguria, “Isoperimetric inequalities for eigenvalues of the Laplacian”, Spectral Theory and Mathematical Physics: a Festschrift in Honor of Barry Simon's 60th Birthday, Proc. Sympos. Pure Math., 76, Part 1, Amer. Math. Soc., Providence, RI, 2007, 105–139 | DOI | MR | Zbl

[2] C. Bandle, “Über des Stekloffsche Eigenwertproblem: Isoperimetrische Ungleichungen für symmetrische Gebiete”, Z. Angew. Math. Phys., 19 (1968), 627–637 | DOI | MR | Zbl

[3] C. Bandle, Isoperimetric Inequalities and Applications, Pitman, Boston, 1980 | MR | Zbl

[4] F. Brock, “An isoperimetric inequality for eigenvalues of the Stekloff problem”, Z. Angew. Math. Mech., 81:1 (2001), 69–71 | 3.0.CO;2-%23 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] D. Bucur, G. Buttazzo, Variational Methods in Shape Optimization Problems, Birkhäuser, Boston, MA, 2005 | MR | Zbl

[6] D. Bucur, A. Henrot, “Minimization of the third eigenvalue of the Dirichlet Laplacian”, Proc. Roy. Soc. London, Ser. A, 456:1996 (2000), 985–996 | DOI | MR | Zbl

[7] R. Courant, “Beweis des Satzes, daß von allen homogenen Membranen gegebenen Umfanges und gegebener Spannung die kreisförmige den tiefsten Grundton besitzt”, Math. Z., 1:2–3 (1918), 321–328 | DOI | MR | Zbl

[8] M. Delfour, J.-P. Zolěsio, Shapes and Geometries. Analysis, Differential Calculus, and Optimization, Advances in Design and Control, 4, SIAM, Philadelphia, 2001 | MR | Zbl

[9] Z. Ding, “A proof of the trace theorem of Sobolev spaces on Lipschitz domains”, Proc. Amer. Math. Soc., 124:2 (1996), 591–600 | DOI | MR | Zbl

[10] B. Dittmar, “Sums of reciprocal Stekloff eigenvalues”, Math. Nachr., 268 (2004), 44–49 | DOI | MR | Zbl

[11] J. Edward, “An inequality for Steklov eigenvalues for planar domains”, Z. Angew. Math. Phys., 45:3 (1994), 493–496 | DOI | MR | Zbl

[12] G. Faber, “Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt”, Sitzungberichte der mathematisch-physikalischen Klasse der Bayerischen Akademie der Wissenschaften zu München Jahrgang, 1923, 169–172 | Zbl

[13] D. W. Fox, J. P. Kuttler, “Sloshing frequencies”, Z. Angew. Math. Phys., 34:5 (1983), 668–696 | DOI | MR | Zbl

[14] A. Girouard, N. Nadirashvili, I. Polterovich, “Maximization of the second positive Neumann eigenvalue for planar domains”, J. Differential Geom., 83:3 (2009), 637–662 | DOI | MR | Zbl

[15] R. Hempel, L. Seco, B. Simon, “The essential spectrum of Neumann Laplacians on some bounded singular domains”, J. Funct. Anal., 102:2 (1991), 448–483 | DOI | MR | Zbl

[16] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Birkhäuser, Basel, 2006 | MR | Zbl

[17] A. Henrot, M. Pierre, Variation et optimisation de formes, Springer-Verlag, Berlin, 2005 | MR | Zbl

[18] A. Henrot, G. Philippin, A. Safoui, Some isoperimetric inequalities with application to the Stekloff problem, arXiv: 0803.4242

[19] J. Hersch, “Quatre propriétés isopérimétriques de membranes sphériques homogènes”, C. R. Acad. Sci. Paris Sér. A-B, 270 (1970), A1645–A1648 | MR

[20] J. Hersch, L. E. Payne, M. M. Schiffer, “Some inequalities for Stekloff eigenvalues”, Arch. Rat. Mech. Anal., 57 (1974), 99–114 | DOI | MR | Zbl

[21] S. Jimbo, Y. Morita, “Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels”, Comm. Partial Differential Equations, 17:3–4 (1992), 523–552 | MR | Zbl

[22] E. Krahn, “Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises”, Math. Ann., 94:1 (1925), 97–100 | DOI | MR | Zbl

[23] E. Krahn, “Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen”, Acta Comm. Unic. Dorpat, A9 (1926), 1–44 | Zbl

[24] J. R. Kuttler, V. G. Sigillito, “An inequality of a Stekloff eigenvalue by the method of defect”, Proc. Amer. Math. Soc., 20 (1969), 357–360 | MR | Zbl

[25] N. Nadirashvili, “Isoperimetric inequality for the second eigenvalue of a sphere”, J. Differential Geom., 61:2 (2002), 335–340 | DOI | MR | Zbl

[26] L. Payne, “Isoperimetric Inequalities and Their Applications”, SIAM Rev., 9:3 (1967), 453–488 | DOI | MR | Zbl

[27] J. W. S. Rayleigh, The Theory of Sound, 1, McMillan, London, 1877 | MR

[28] W. Stekloff, “Sur les problèmes fondamentaux de la physique mathématique”, Ann. Sci. Ecole Norm. Sup., 19 (1902), 455–490 | DOI | MR | Zbl

[29] G. Szegö, “Inequalities for certain eigenvalues of a membrane of given area”, J. Rational Mech. Anal., 3 (1954), 343–356 | MR | Zbl

[30] M. E. Taylor, Partial differential equations II. Qualitative studies of linear equations, Applied Mathematical Sciences, 116, Springer-Verlag, New York, 1996 | MR | Zbl

[31] J. Sylvester, G. Uhlmann, “The Dirichlet to Neumann map and applications”, Inverse Problems in Partial Differential Equations (Arcata, CA, 1989), SIAM, Philadelphia, PA, 1990, 101–139 | MR

[32] H. F. Weinberger, “An isoperimetric inequality for the $N$-dimensional free membrane problem”, J. Rational Mech. Anal., 5 (1956), 633–636 | MR | Zbl

[33] R. Weinstock, “Inequalities for a classical eigenvalue problem”, J. Rational Mech. Anal., 3 (1954), 745–753 | MR | Zbl

[34] A. Wolf, J. Keller, “Range of the first two eigenvalues of the Laplacian”, Proc. Roy. Soc. London, Ser. A, 447 (1994), 397–412 | DOI | MR | Zbl