On the Hersch--Payne--Schiffer inequalities for Steklov eigenvalues
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 33-47
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the Hersch–Payne–Schiffer isoperimetric inequality for the $n$th nonzero Steklov eigenvalue of a bounded simply connected planar domain is sharp for all $n\ge 1$. The equality is attained in the limit by a sequence of simply connected domains degenerating into a disjoint union of $n$ identical disks. Similar results are obtained for the product of two consecutive Steklov eigenvalues. We also give a new proof of the Hersch–Payne–Schiffer inequality for $n=2$ and show that it is strict in this case.
Keywords:
Steklov eigenvalue problem, eigenvalue, isoperimetric inequality.
@article{FAA_2010_44_2_a3,
author = {A. Girouard and I. V. Polterovich},
title = {On the {Hersch--Payne--Schiffer} inequalities for {Steklov} eigenvalues},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {33--47},
publisher = {mathdoc},
volume = {44},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a3/}
}
TY - JOUR AU - A. Girouard AU - I. V. Polterovich TI - On the Hersch--Payne--Schiffer inequalities for Steklov eigenvalues JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2010 SP - 33 EP - 47 VL - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a3/ LA - ru ID - FAA_2010_44_2_a3 ER -
A. Girouard; I. V. Polterovich. On the Hersch--Payne--Schiffer inequalities for Steklov eigenvalues. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 33-47. http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a3/