Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2010_44_2_a3, author = {A. Girouard and I. V. Polterovich}, title = {On the {Hersch--Payne--Schiffer} inequalities for {Steklov} eigenvalues}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {33--47}, publisher = {mathdoc}, volume = {44}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a3/} }
TY - JOUR AU - A. Girouard AU - I. V. Polterovich TI - On the Hersch--Payne--Schiffer inequalities for Steklov eigenvalues JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2010 SP - 33 EP - 47 VL - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a3/ LA - ru ID - FAA_2010_44_2_a3 ER -
A. Girouard; I. V. Polterovich. On the Hersch--Payne--Schiffer inequalities for Steklov eigenvalues. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 33-47. http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a3/
[1] M. S. Ashbaugh, R. D. Benguria, “Isoperimetric inequalities for eigenvalues of the Laplacian”, Spectral Theory and Mathematical Physics: a Festschrift in Honor of Barry Simon's 60th Birthday, Proc. Sympos. Pure Math., 76, Part 1, Amer. Math. Soc., Providence, RI, 2007, 105–139 | DOI | MR | Zbl
[2] C. Bandle, “Über des Stekloffsche Eigenwertproblem: Isoperimetrische Ungleichungen für symmetrische Gebiete”, Z. Angew. Math. Phys., 19 (1968), 627–637 | DOI | MR | Zbl
[3] C. Bandle, Isoperimetric Inequalities and Applications, Pitman, Boston, 1980 | MR | Zbl
[4] F. Brock, “An isoperimetric inequality for eigenvalues of the Stekloff problem”, Z. Angew. Math. Mech., 81:1 (2001), 69–71 | 3.0.CO;2-%23 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[5] D. Bucur, G. Buttazzo, Variational Methods in Shape Optimization Problems, Birkhäuser, Boston, MA, 2005 | MR | Zbl
[6] D. Bucur, A. Henrot, “Minimization of the third eigenvalue of the Dirichlet Laplacian”, Proc. Roy. Soc. London, Ser. A, 456:1996 (2000), 985–996 | DOI | MR | Zbl
[7] R. Courant, “Beweis des Satzes, daß von allen homogenen Membranen gegebenen Umfanges und gegebener Spannung die kreisförmige den tiefsten Grundton besitzt”, Math. Z., 1:2–3 (1918), 321–328 | DOI | MR | Zbl
[8] M. Delfour, J.-P. Zolěsio, Shapes and Geometries. Analysis, Differential Calculus, and Optimization, Advances in Design and Control, 4, SIAM, Philadelphia, 2001 | MR | Zbl
[9] Z. Ding, “A proof of the trace theorem of Sobolev spaces on Lipschitz domains”, Proc. Amer. Math. Soc., 124:2 (1996), 591–600 | DOI | MR | Zbl
[10] B. Dittmar, “Sums of reciprocal Stekloff eigenvalues”, Math. Nachr., 268 (2004), 44–49 | DOI | MR | Zbl
[11] J. Edward, “An inequality for Steklov eigenvalues for planar domains”, Z. Angew. Math. Phys., 45:3 (1994), 493–496 | DOI | MR | Zbl
[12] G. Faber, “Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt”, Sitzungberichte der mathematisch-physikalischen Klasse der Bayerischen Akademie der Wissenschaften zu München Jahrgang, 1923, 169–172 | Zbl
[13] D. W. Fox, J. P. Kuttler, “Sloshing frequencies”, Z. Angew. Math. Phys., 34:5 (1983), 668–696 | DOI | MR | Zbl
[14] A. Girouard, N. Nadirashvili, I. Polterovich, “Maximization of the second positive Neumann eigenvalue for planar domains”, J. Differential Geom., 83:3 (2009), 637–662 | DOI | MR | Zbl
[15] R. Hempel, L. Seco, B. Simon, “The essential spectrum of Neumann Laplacians on some bounded singular domains”, J. Funct. Anal., 102:2 (1991), 448–483 | DOI | MR | Zbl
[16] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Birkhäuser, Basel, 2006 | MR | Zbl
[17] A. Henrot, M. Pierre, Variation et optimisation de formes, Springer-Verlag, Berlin, 2005 | MR | Zbl
[18] A. Henrot, G. Philippin, A. Safoui, Some isoperimetric inequalities with application to the Stekloff problem, arXiv: 0803.4242
[19] J. Hersch, “Quatre propriétés isopérimétriques de membranes sphériques homogènes”, C. R. Acad. Sci. Paris Sér. A-B, 270 (1970), A1645–A1648 | MR
[20] J. Hersch, L. E. Payne, M. M. Schiffer, “Some inequalities for Stekloff eigenvalues”, Arch. Rat. Mech. Anal., 57 (1974), 99–114 | DOI | MR | Zbl
[21] S. Jimbo, Y. Morita, “Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels”, Comm. Partial Differential Equations, 17:3–4 (1992), 523–552 | MR | Zbl
[22] E. Krahn, “Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises”, Math. Ann., 94:1 (1925), 97–100 | DOI | MR | Zbl
[23] E. Krahn, “Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen”, Acta Comm. Unic. Dorpat, A9 (1926), 1–44 | Zbl
[24] J. R. Kuttler, V. G. Sigillito, “An inequality of a Stekloff eigenvalue by the method of defect”, Proc. Amer. Math. Soc., 20 (1969), 357–360 | MR | Zbl
[25] N. Nadirashvili, “Isoperimetric inequality for the second eigenvalue of a sphere”, J. Differential Geom., 61:2 (2002), 335–340 | DOI | MR | Zbl
[26] L. Payne, “Isoperimetric Inequalities and Their Applications”, SIAM Rev., 9:3 (1967), 453–488 | DOI | MR | Zbl
[27] J. W. S. Rayleigh, The Theory of Sound, 1, McMillan, London, 1877 | MR
[28] W. Stekloff, “Sur les problèmes fondamentaux de la physique mathématique”, Ann. Sci. Ecole Norm. Sup., 19 (1902), 455–490 | DOI | MR | Zbl
[29] G. Szegö, “Inequalities for certain eigenvalues of a membrane of given area”, J. Rational Mech. Anal., 3 (1954), 343–356 | MR | Zbl
[30] M. E. Taylor, Partial differential equations II. Qualitative studies of linear equations, Applied Mathematical Sciences, 116, Springer-Verlag, New York, 1996 | MR | Zbl
[31] J. Sylvester, G. Uhlmann, “The Dirichlet to Neumann map and applications”, Inverse Problems in Partial Differential Equations (Arcata, CA, 1989), SIAM, Philadelphia, PA, 1990, 101–139 | MR
[32] H. F. Weinberger, “An isoperimetric inequality for the $N$-dimensional free membrane problem”, J. Rational Mech. Anal., 5 (1956), 633–636 | MR | Zbl
[33] R. Weinstock, “Inequalities for a classical eigenvalue problem”, J. Rational Mech. Anal., 3 (1954), 745–753 | MR | Zbl
[34] A. Wolf, J. Keller, “Range of the first two eigenvalues of the Laplacian”, Proc. Roy. Soc. London, Ser. A, 447 (1994), 397–412 | DOI | MR | Zbl