On the Hersch--Payne--Schiffer inequalities for Steklov eigenvalues
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 33-47

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the Hersch–Payne–Schiffer isoperimetric inequality for the $n$th nonzero Steklov eigenvalue of a bounded simply connected planar domain is sharp for all $n\ge 1$. The equality is attained in the limit by a sequence of simply connected domains degenerating into a disjoint union of $n$ identical disks. Similar results are obtained for the product of two consecutive Steklov eigenvalues. We also give a new proof of the Hersch–Payne–Schiffer inequality for $n=2$ and show that it is strict in this case.
Keywords: Steklov eigenvalue problem, eigenvalue, isoperimetric inequality.
@article{FAA_2010_44_2_a3,
     author = {A. Girouard and I. V. Polterovich},
     title = {On the {Hersch--Payne--Schiffer} inequalities for {Steklov} eigenvalues},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {33--47},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a3/}
}
TY  - JOUR
AU  - A. Girouard
AU  - I. V. Polterovich
TI  - On the Hersch--Payne--Schiffer inequalities for Steklov eigenvalues
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 33
EP  - 47
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a3/
LA  - ru
ID  - FAA_2010_44_2_a3
ER  - 
%0 Journal Article
%A A. Girouard
%A I. V. Polterovich
%T On the Hersch--Payne--Schiffer inequalities for Steklov eigenvalues
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 33-47
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a3/
%G ru
%F FAA_2010_44_2_a3
A. Girouard; I. V. Polterovich. On the Hersch--Payne--Schiffer inequalities for Steklov eigenvalues. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 33-47. http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a3/