The Erd\H{o}s--Vershik problem for the golden ratio
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of the Erdős measure and the invariant Erdős measure for the golden ratio and all values of the Bernoulli parameter are studied. It is proved that a shift on the two-sided Fibonacci compact set with invariant Erdős measure is isomorphic to the integral automorphism for a Bernoulli shift with countable alphabet. An effective algorithm for calculating the entropy of an invariant Erdős measure is proposed. It is shown that, for certain values of the Bernoulli parameter, this algorithm gives the Hausdorff dimension of an Erdős measure to 15 decimal places.
Keywords: hidden Markov chain, Erdős measure, invariant Erdős measure, golden shift, integral automorphism, entropy, Hausdorff dimension of a measure.
@article{FAA_2010_44_2_a1,
     author = {Z. I. Bezhaeva and V. I. Oseledets},
     title = {The {Erd\H{o}s--Vershik} problem for the golden ratio},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a1/}
}
TY  - JOUR
AU  - Z. I. Bezhaeva
AU  - V. I. Oseledets
TI  - The Erd\H{o}s--Vershik problem for the golden ratio
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 3
EP  - 13
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a1/
LA  - ru
ID  - FAA_2010_44_2_a1
ER  - 
%0 Journal Article
%A Z. I. Bezhaeva
%A V. I. Oseledets
%T The Erd\H{o}s--Vershik problem for the golden ratio
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 3-13
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a1/
%G ru
%F FAA_2010_44_2_a1
Z. I. Bezhaeva; V. I. Oseledets. The Erd\H{o}s--Vershik problem for the golden ratio. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a1/

[1] Z. I. Bezhaeva, V. I. Oseledets, “Mery Erdësha, soficheskie mery i markovskie tsepi”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algebraicheskie metody, XIII, Zap. nauchn. sem. POMI, 326, 2005, 28–47 | MR | Zbl

[2] P. Billingslei, Ergodicheskaya teoriya i informatsiya, Mir, M., 1969 | MR

[3] N. Sidorov, A. Vershik, “Ergodic properties of the Erdos measures, the entropy of the goldenshift, and related problems”, Monatsh. Math., 126:3 (1998), 215–261 | DOI | MR | Zbl

[4] J. C. Alexander, D. Zagier, “The entropy of certain infinitely convolved Bernoulli measure.”, J. London Math. Soc., 44:1 (1991), 121–134 | DOI | MR | Zbl

[5] S. P. Lalley, “Random series in powers of algebraic integers: Hausdorff dimension of the limit distribution”, J. London Math. Soc. (2), 57:3 (1998), 629–654 | DOI | MR | Zbl

[6] De-Jun Feng, “The limited Rademacher function and Bernoulli convolutions associated with Pisot numbers”, Adv. Math., 195:1 (2005), 24–101 | DOI | MR | Zbl

[7] L. M. Abramov, “Entropiya indutsirovannogo avtomorfizma”, Dokl. AN SSSR, 128 (1959), 647–650 | MR | Zbl