Koenigs Problem and Extreme Fixed Points
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 1, pp. 87-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

This note continues some previous studies by the authors. We consider a linear-fractional mapping $\mathcal{F}_A\colon\mathcal{K}\to\mathcal{K}$ generated by a triangular operator, where $\mathcal{K}$ is the unit operator ball and the fixed point $C$ of the extension of $\mathcal{F}_A$ to $\overline{\mathcal{K}}$ is either an isometry or a coisometry. Under some natural restrictions on one of the diagonal entries of the operator matrix $A$, the structure of the other diagonal entry is investigated completely. It is shown that generally $C$ cannot be replaced in all these considerations by an arbitrary point of the unit sphere. Some special cases are studied in which this is nevertheless possible. In conclusion, the Koenigs embedding property of the mappings under study is proved with the use of the results announced in this paper.
Keywords: bounded linear operator, Hilbert space, indefinite metric, Koenigs embedding property, linear-fractional mapping, operator ball.
@article{FAA_2010_44_1_a8,
     author = {V. A. Senderov and V. A. Khatskevich},
     title = {Koenigs {Problem} and {Extreme} {Fixed} {Points}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {87--90},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a8/}
}
TY  - JOUR
AU  - V. A. Senderov
AU  - V. A. Khatskevich
TI  - Koenigs Problem and Extreme Fixed Points
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 87
EP  - 90
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a8/
LA  - ru
ID  - FAA_2010_44_1_a8
ER  - 
%0 Journal Article
%A V. A. Senderov
%A V. A. Khatskevich
%T Koenigs Problem and Extreme Fixed Points
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 87-90
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a8/
%G ru
%F FAA_2010_44_1_a8
V. A. Senderov; V. A. Khatskevich. Koenigs Problem and Extreme Fixed Points. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 1, pp. 87-90. http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a8/

[1] V. Khatskevich, S. Reich, D. Shoikhet, Nonlinear Anal., 47:6 (2001), 3977–3988 | DOI | MR | Zbl

[2] V. Khatskevich, S. Reich, D. Shoikhet, Acta Sci. Math. (Szeged), 69:1-2 (2003), 67–98 | MR | Zbl

[3] V. Khatskevich, V. Senderov, DAN, 403:5 (2005), 607–609 | MR | Zbl

[4] M. Elin, V. Khatskevich, Contemp. Math., 382, Amer. Math. Soc., Providence, RI, 2005, 113–120 | DOI | MR | Zbl

[5] M. Elin, V. Khatskevich, J. Nonlinear Convex Anal., 6:1 (2005), 173–185 | MR | Zbl

[6] N. Danford, Dzh. Shvarts, Lineinye operatory, t. 1, Obschaya teoriya, Mir, M., 1962

[7] T. Ya. Azizov, I. S. Iokhvidov, Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR

[8] V. A. Khatskevich, V. A. Senderov, Dokl. RAN, 379:4 (2001), 455–458 | MR | Zbl

[9] V. Khatskevich, V. Senderov, Funct. Different. Equ., 10:1/2 (2003), 239–258 | MR | Zbl

[10] V. Khatskevich, V. Senderov, Fields Inst. Commun., 25, Amer. Math. Soc., Providence, RI, 2000, 331–344 | MR | Zbl

[11] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand Co., Princeton, NJ–Toronto, Ont.–London, 1967 | MR | Zbl