Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2010_44_1_a7, author = {A. I. Perov}, title = {Multidimensional {Version} of {M.~A.~Krasnosel'skii's} {Generalized} {Contraction} {Principle}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {83--87}, publisher = {mathdoc}, volume = {44}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a7/} }
TY - JOUR AU - A. I. Perov TI - Multidimensional Version of M.~A.~Krasnosel'skii's Generalized Contraction Principle JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2010 SP - 83 EP - 87 VL - 44 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a7/ LA - ru ID - FAA_2010_44_1_a7 ER -
A. I. Perov. Multidimensional Version of M.~A.~Krasnosel'skii's Generalized Contraction Principle. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 1, pp. 83-87. http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a7/
[1] M. A. Krasnoselskii, V. Sh. Burd, Yu. S. Kolesov, Nelineinye pochti periodicheskie kolebaniya, Nauka, M., 1970 | MR
[2] Yu. V. Trubnikov, A. I. Perov, Differentsialnye uravneniya s monotonnymi nelineinostyami, Nauka i tekhnika, Minsk, 1986 | MR | Zbl
[3] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatlit, M., 1960
[4] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR
[5] M. A. Krasnoselskii, Polozhitelnye resheniya operatornykh uravnenii, Fizmatlit, M., 1962 | MR
[6] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR
[7] I. K. Daugavet, Vvedenie v teoriyu priblizheniya funktsii, Izd-vo LGU, Leningrad, 1977 | MR | Zbl
[8] P. P. Zabrejko, Collect. Math., 48:4-6 (1997), 825–859 | MR | Zbl
[9] L. Kollatts, Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969
[10] Dzh. Ortega, V. Reinboldt, Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975 | MR
[11] A. I. Perov, “Obobschennyi printsip szhimayuschikh otobrazhenii”, Vestnik VGU, 2005, no. 1, 196–207 | Zbl