Multidimensional Version of M.~A.~Krasnosel'skii's Generalized Contraction Principle
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 1, pp. 83-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a complete $K$-metric space with $n$-dimensional metric $\rho (x,y)\colon M\times M\to\mathbb{R}^n$, where $K$ is the cone of nonnegative vectors in $\mathbb{R}^n$. A mapping $F\colon M\to M$ is called a $Q$-contraction if $\rho (Fx,Fy)\le Q\rho (x,y)$, where $Q\colon K\to K$ is a semi-additive absolutely stable mapping. A $Q$-contraction always has a unique fixed point $x^*$ in $M$, and $\rho (x^*,a)\le (I-Q)^{-1}\rho(Fa,a)$ for every point $a$ in $M$. The point $x^*$ can be obtained by the successive approximation method $x_k=Fx_{k-1}$, $k=1,2,\dots$, starting from an arbitrary point $x_0$ in $M$, and the following error estimates hold: $\rho(x^*,x_k)\le Q^k(I-Q)^{-1}\rho(x_1,x_0)\le (I-Q)^{-1}Q^k\rho(x_1,x_0)$, $k=1,2,\dots$ . Generally, the mappings $(I-Q)^{-1}$ and $Q^k$ do not commute. For $n=1$, the result is close to M. A. Krasnosel'skii's generalized contraction principle.
Keywords: $K$-metric space, semi-additive mapping, contraction mapping principle.
Mots-clés : $Q$-contraction
@article{FAA_2010_44_1_a7,
     author = {A. I. Perov},
     title = {Multidimensional {Version} of {M.~A.~Krasnosel'skii's} {Generalized} {Contraction} {Principle}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {83--87},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a7/}
}
TY  - JOUR
AU  - A. I. Perov
TI  - Multidimensional Version of M.~A.~Krasnosel'skii's Generalized Contraction Principle
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 83
EP  - 87
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a7/
LA  - ru
ID  - FAA_2010_44_1_a7
ER  - 
%0 Journal Article
%A A. I. Perov
%T Multidimensional Version of M.~A.~Krasnosel'skii's Generalized Contraction Principle
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 83-87
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a7/
%G ru
%F FAA_2010_44_1_a7
A. I. Perov. Multidimensional Version of M.~A.~Krasnosel'skii's Generalized Contraction Principle. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 1, pp. 83-87. http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a7/

[1] M. A. Krasnoselskii, V. Sh. Burd, Yu. S. Kolesov, Nelineinye pochti periodicheskie kolebaniya, Nauka, M., 1970 | MR

[2] Yu. V. Trubnikov, A. I. Perov, Differentsialnye uravneniya s monotonnymi nelineinostyami, Nauka i tekhnika, Minsk, 1986 | MR | Zbl

[3] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatlit, M., 1960

[4] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR

[5] M. A. Krasnoselskii, Polozhitelnye resheniya operatornykh uravnenii, Fizmatlit, M., 1962 | MR

[6] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR

[7] I. K. Daugavet, Vvedenie v teoriyu priblizheniya funktsii, Izd-vo LGU, Leningrad, 1977 | MR | Zbl

[8] P. P. Zabrejko, Collect. Math., 48:4-6 (1997), 825–859 | MR | Zbl

[9] L. Kollatts, Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969

[10] Dzh. Ortega, V. Reinboldt, Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975 | MR

[11] A. I. Perov, “Obobschennyi printsip szhimayuschikh otobrazhenii”, Vestnik VGU, 2005, no. 1, 196–207 | Zbl