Multidimensional Version of M.~A.~Krasnosel'skii's Generalized Contraction Principle
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 1, pp. 83-87
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $M$ be a complete $K$-metric space with $n$-dimensional metric $\rho (x,y)\colon M\times M\to\mathbb{R}^n$, where $K$ is the cone of nonnegative vectors in $\mathbb{R}^n$. A mapping $F\colon M\to M$ is called a $Q$-contraction if $\rho (Fx,Fy)\le Q\rho (x,y)$, where $Q\colon K\to K$ is a semi-additive absolutely stable mapping. A $Q$-contraction always has a unique fixed point $x^*$ in $M$, and $\rho (x^*,a)\le (I-Q)^{-1}\rho(Fa,a)$ for every point $a$ in $M$. The point $x^*$ can be obtained by the successive approximation method $x_k=Fx_{k-1}$, $k=1,2,\dots$, starting from an arbitrary point $x_0$ in $M$, and the following error estimates hold: $\rho(x^*,x_k)\le Q^k(I-Q)^{-1}\rho(x_1,x_0)\le (I-Q)^{-1}Q^k\rho(x_1,x_0)$, $k=1,2,\dots$ . Generally, the mappings $(I-Q)^{-1}$ and $Q^k$ do not commute. For $n=1$, the result is close to M. A. Krasnosel'skii's generalized contraction principle.
Keywords:
$K$-metric space, semi-additive mapping, contraction mapping principle.
Mots-clés : $Q$-contraction
Mots-clés : $Q$-contraction
@article{FAA_2010_44_1_a7,
author = {A. I. Perov},
title = {Multidimensional {Version} of {M.~A.~Krasnosel'skii's} {Generalized} {Contraction} {Principle}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {83--87},
publisher = {mathdoc},
volume = {44},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a7/}
}
TY - JOUR AU - A. I. Perov TI - Multidimensional Version of M.~A.~Krasnosel'skii's Generalized Contraction Principle JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2010 SP - 83 EP - 87 VL - 44 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a7/ LA - ru ID - FAA_2010_44_1_a7 ER -
A. I. Perov. Multidimensional Version of M.~A.~Krasnosel'skii's Generalized Contraction Principle. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 1, pp. 83-87. http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a7/