Double Affine Hecke Algebra in Logarithmic Conformal Field Theory
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 1, pp. 68-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a representation of the double affine Hecke algebra. The symmetrization of this representation coincides with the center of the quantum group $\overline{\mathscr{U}}_{\mathfrak{q}} s\ell(2)$ and, by Kazhdan–Lusztig duality, with the Verlinde algebra of the $(1,p)$-model of the logarithmic conformal field theory.
Keywords: double affine Hecke algebra, quantum group, conformal field theory.
@article{FAA_2010_44_1_a5,
     author = {G. S. Mutafyan and I. Yu. Tipunin},
     title = {Double {Affine} {Hecke} {Algebra} in {Logarithmic} {Conformal} {Field} {Theory}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {68--79},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a5/}
}
TY  - JOUR
AU  - G. S. Mutafyan
AU  - I. Yu. Tipunin
TI  - Double Affine Hecke Algebra in Logarithmic Conformal Field Theory
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 68
EP  - 79
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a5/
LA  - ru
ID  - FAA_2010_44_1_a5
ER  - 
%0 Journal Article
%A G. S. Mutafyan
%A I. Yu. Tipunin
%T Double Affine Hecke Algebra in Logarithmic Conformal Field Theory
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 68-79
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a5/
%G ru
%F FAA_2010_44_1_a5
G. S. Mutafyan; I. Yu. Tipunin. Double Affine Hecke Algebra in Logarithmic Conformal Field Theory. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 1, pp. 68-79. http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a5/

[1] V. Gurarie, “Logarithmic operators in conformal field theory”, Nuclear Phys. B, 410:3 (1993), 535–549, arXiv: hep-th/9303160 | DOI | MR | Zbl

[2] A. M. Semikhatov, Factorizable ribbon quantum groups in logarithmic conformal field theories, arXiv: 0705.4267

[3] M. R. Gaberdiel, H. G. Kausch, “A rational logarithmic conformal field theory”, Phys. Lett. B, 386:1-4 (1996), 131–137, arXiv: hep-th/9606050 | DOI | MR

[4] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, Kazhdan–Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic CFT, arXiv: math/0512621

[5] D. Kazhdan, G. Lusztig, “Tensor structures arising from affine Lie algebras, I”, J. Amer. Math. Soc., 6:4 (1993), 905–947 ; “II”, J. Amer. Math. Soc., 6:4 (1993), 949–1011 ; “III”, J. Amer. Math. Soc., 7:2 (1994), 335–381 ; “IV”, J. Amer. Math. Soc., 7:2 (1994), 383–453 | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | MR | Zbl

[6] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, “Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center”, Comm. Math. Phys., 265:1 (2006), 47–93, arXiv: hep-th/0504093 | DOI | MR | Zbl

[7] M. R. Gaberdiel, H. G. Kausch, “Indecomposable fusion products”, Nucl. Phys. B, 477:1 (1996), 293–318, arXiv: hep-th/9604026 | DOI | MR

[8] J. Fuchs, S. Hwang, A. M. Semikhatov, I. Yu. Tipunin, “Nonsemisimple fusion algebras and the Verlinde formula”, Comm. Math. Phys., 247:3 (2004), 713–742, arXiv: hep-th/0306274 | DOI | MR | Zbl

[9] M. Flohr, H. Knuth, On Verlinde-like formulas in $c_{p,1}$ logarithmic conformal field theories, arXiv: 0705.0545

[10] M. Flohr, “Bits and pieces in logarithmic conformal field theory”, Internat. J. Modern Phys. A, 18:25 (2003), 4497–4592, arXiv: hep-th/0111228 | DOI | MR

[11] I. Cherednik, Double Affine Hecke Algebras, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl

[12] I. Cherednik, Private communication, Kyoto, 2004