Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2010_44_1_a5, author = {G. S. Mutafyan and I. Yu. Tipunin}, title = {Double {Affine} {Hecke} {Algebra} in {Logarithmic} {Conformal} {Field} {Theory}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {68--79}, publisher = {mathdoc}, volume = {44}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a5/} }
TY - JOUR AU - G. S. Mutafyan AU - I. Yu. Tipunin TI - Double Affine Hecke Algebra in Logarithmic Conformal Field Theory JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2010 SP - 68 EP - 79 VL - 44 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a5/ LA - ru ID - FAA_2010_44_1_a5 ER -
G. S. Mutafyan; I. Yu. Tipunin. Double Affine Hecke Algebra in Logarithmic Conformal Field Theory. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 1, pp. 68-79. http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a5/
[1] V. Gurarie, “Logarithmic operators in conformal field theory”, Nuclear Phys. B, 410:3 (1993), 535–549, arXiv: hep-th/9303160 | DOI | MR | Zbl
[2] A. M. Semikhatov, Factorizable ribbon quantum groups in logarithmic conformal field theories, arXiv: 0705.4267
[3] M. R. Gaberdiel, H. G. Kausch, “A rational logarithmic conformal field theory”, Phys. Lett. B, 386:1-4 (1996), 131–137, arXiv: hep-th/9606050 | DOI | MR
[4] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, Kazhdan–Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic CFT, arXiv: math/0512621
[5] D. Kazhdan, G. Lusztig, “Tensor structures arising from affine Lie algebras, I”, J. Amer. Math. Soc., 6:4 (1993), 905–947 ; “II”, J. Amer. Math. Soc., 6:4 (1993), 949–1011 ; “III”, J. Amer. Math. Soc., 7:2 (1994), 335–381 ; “IV”, J. Amer. Math. Soc., 7:2 (1994), 383–453 | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | MR | Zbl
[6] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, “Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center”, Comm. Math. Phys., 265:1 (2006), 47–93, arXiv: hep-th/0504093 | DOI | MR | Zbl
[7] M. R. Gaberdiel, H. G. Kausch, “Indecomposable fusion products”, Nucl. Phys. B, 477:1 (1996), 293–318, arXiv: hep-th/9604026 | DOI | MR
[8] J. Fuchs, S. Hwang, A. M. Semikhatov, I. Yu. Tipunin, “Nonsemisimple fusion algebras and the Verlinde formula”, Comm. Math. Phys., 247:3 (2004), 713–742, arXiv: hep-th/0306274 | DOI | MR | Zbl
[9] M. Flohr, H. Knuth, On Verlinde-like formulas in $c_{p,1}$ logarithmic conformal field theories, arXiv: 0705.0545
[10] M. Flohr, “Bits and pieces in logarithmic conformal field theory”, Internat. J. Modern Phys. A, 18:25 (2003), 4497–4592, arXiv: hep-th/0111228 | DOI | MR
[11] I. Cherednik, Double Affine Hecke Algebras, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl
[12] I. Cherednik, Private communication, Kyoto, 2004