The Monodromy Problem and the Tangential Center Problem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 1, pp. 27-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider families of Abelian integrals arising from perturbations of planar Hamiltonian systems. The tangential center–focus problem asks for conditions under which these integrals vanish identically. The problem is closely related to the monodromy problem, which asks when the monodromy of a vanishing cycle generates the whole homology of the level curves of the Hamiltonian. We solve both of these questions for the case in which the Hamiltonian is hyperelliptic. As a by-product, we solve the corresponding problems for the $0$-dimensional Abelian integrals defined by Gavrilov and Movasati.
Keywords: tangential center, Abelian integral
Mots-clés : composition, monodromy.
@article{FAA_2010_44_1_a2,
     author = {C. Christopher and P. Marde\v{s}ic},
     title = {The {Monodromy} {Problem} and the {Tangential} {Center} {Problem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {27--43},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a2/}
}
TY  - JOUR
AU  - C. Christopher
AU  - P. Mardešic
TI  - The Monodromy Problem and the Tangential Center Problem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 27
EP  - 43
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a2/
LA  - ru
ID  - FAA_2010_44_1_a2
ER  - 
%0 Journal Article
%A C. Christopher
%A P. Mardešic
%T The Monodromy Problem and the Tangential Center Problem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 27-43
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a2/
%G ru
%F FAA_2010_44_1_a2
C. Christopher; P. Mardešic. The Monodromy Problem and the Tangential Center Problem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 1, pp. 27-43. http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a2/

[1] V. I. Arnold, Arnold's problems, Translated and revised edition of the 2000 Russian original (V. I. Arnold, Zadachi Arnolda, FAZIS, M., 2000). With a preface by V. Philippov, A. Yakivchik and M. Peters, Springer-Verlag, Berlin; PHASIS, Moscow, 2004 | MR

[2] P. Bonnet, A. Dimca, “Relative differential forms and complex polynomials”, Bull. Sci. Math., 124:7 (2000), 557–571 | DOI | MR | Zbl

[3] M. Briskin, J.-P. Françoise, Y. Yomdin, “Generalized moments, center-focus conditions, and compositions of polynomials”, Operator theory, system theory and related topics (Beer-Sheva/Rehovot, 1997), Oper. Theory Adv. Appl., 123, Birkhäuser, Basel, 2001, 161–185 | MR | Zbl

[4] M. Briskin, Y. Yomdin, “Tangential version of Hilbert 16th problem for the Abel equation”, Mosc. Math. J., 5:1 (2005), 23–53 | DOI | MR | Zbl

[5] C. Christopher, “Abel equations: composition conjectures and the model problem”, Bull. London Math. Soc., 32:3 (2000), 332–338 | DOI | MR | Zbl

[6] J. D. Dixon, B. Mortimer, Permutation Groups, Graduate Texts in Math., 163, Springer-Verlag, New York, 1996 | DOI | MR | Zbl

[7] S. Evdokimov, I. Ponomarenko, “A new look at the Burnside–Schur theorem”, Bull. London Math. Soc., 37:4 (2005), 535–546 | DOI | MR | Zbl

[8] O. Forster, Rimanovy poverkhnosti, Mir, M., 1980 | MR

[9] J.-P. Françoise, “The successive derivatives of the period function of a plane vector field”, J. Differential Equations, 146:2 (1998), 320–335 | DOI | MR | Zbl

[10] L. Gavrilov, “Petrov modules and zeros of Abelian integrals”, Bull. Sci. Math., 122:8 (1998), 571–584 | DOI | MR | Zbl

[11] L. Gavrilov, H. Movasati, “The infinitesimal 16th Hilbert problem in dimension zero”, Bull. Sci. Math., 131:3 (2007), 242–257, arXiv: math.CA/0507061 | DOI | MR | Zbl

[12] M. Kholl, Teoriya grupp, Mir, M., 1962

[13] Yu. S. Ilyashenko, “Vozniknovenie predelnykh tsiklov pri vozmuschenii uravneniya $dw/dz=-R_z/R_w$, gde $R(z,w)$ — mnogochlen”, Matem. sb., 78:3 (1969), 360–373

[14] M. Muzychuk, F. Pakovich, “Solution of the polynomial moment problem”, Proc. London Math. Soc., 99:3 (2009), 633–657, arXiv: 0710.4085v1 | DOI | MR | Zbl

[15] F. Pakovich, “A counterexample to the “composition conjecture””, Proc. Amer. Math. Soc., 130:12 (2002), 3747–3749 | DOI | MR | Zbl

[16] F. Pakovich, “On polynomials orthogonal to all powers of a Chebyshev polynomial on a segment”, Israel J. Math., 142 (2004), 273–283 | DOI | MR | Zbl

[17] S. Yakovenko, “A geometric proof of the Bautin theorem. Concerning the Hilbert 16th problem”, Amer. Math. Soc. Transl. Ser. 2, 165, Amer. Math. Soc., Providence, RI, 1995, 203–219 | MR | Zbl