Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2010_44_1_a2, author = {C. Christopher and P. Marde\v{s}ic}, title = {The {Monodromy} {Problem} and the {Tangential} {Center} {Problem}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {27--43}, publisher = {mathdoc}, volume = {44}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a2/} }
C. Christopher; P. Mardešic. The Monodromy Problem and the Tangential Center Problem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 1, pp. 27-43. http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a2/
[1] V. I. Arnold, Arnold's problems, Translated and revised edition of the 2000 Russian original (V. I. Arnold, Zadachi Arnolda, FAZIS, M., 2000). With a preface by V. Philippov, A. Yakivchik and M. Peters, Springer-Verlag, Berlin; PHASIS, Moscow, 2004 | MR
[2] P. Bonnet, A. Dimca, “Relative differential forms and complex polynomials”, Bull. Sci. Math., 124:7 (2000), 557–571 | DOI | MR | Zbl
[3] M. Briskin, J.-P. Françoise, Y. Yomdin, “Generalized moments, center-focus conditions, and compositions of polynomials”, Operator theory, system theory and related topics (Beer-Sheva/Rehovot, 1997), Oper. Theory Adv. Appl., 123, Birkhäuser, Basel, 2001, 161–185 | MR | Zbl
[4] M. Briskin, Y. Yomdin, “Tangential version of Hilbert 16th problem for the Abel equation”, Mosc. Math. J., 5:1 (2005), 23–53 | DOI | MR | Zbl
[5] C. Christopher, “Abel equations: composition conjectures and the model problem”, Bull. London Math. Soc., 32:3 (2000), 332–338 | DOI | MR | Zbl
[6] J. D. Dixon, B. Mortimer, Permutation Groups, Graduate Texts in Math., 163, Springer-Verlag, New York, 1996 | DOI | MR | Zbl
[7] S. Evdokimov, I. Ponomarenko, “A new look at the Burnside–Schur theorem”, Bull. London Math. Soc., 37:4 (2005), 535–546 | DOI | MR | Zbl
[8] O. Forster, Rimanovy poverkhnosti, Mir, M., 1980 | MR
[9] J.-P. Françoise, “The successive derivatives of the period function of a plane vector field”, J. Differential Equations, 146:2 (1998), 320–335 | DOI | MR | Zbl
[10] L. Gavrilov, “Petrov modules and zeros of Abelian integrals”, Bull. Sci. Math., 122:8 (1998), 571–584 | DOI | MR | Zbl
[11] L. Gavrilov, H. Movasati, “The infinitesimal 16th Hilbert problem in dimension zero”, Bull. Sci. Math., 131:3 (2007), 242–257, arXiv: math.CA/0507061 | DOI | MR | Zbl
[12] M. Kholl, Teoriya grupp, Mir, M., 1962
[13] Yu. S. Ilyashenko, “Vozniknovenie predelnykh tsiklov pri vozmuschenii uravneniya $dw/dz=-R_z/R_w$, gde $R(z,w)$ — mnogochlen”, Matem. sb., 78:3 (1969), 360–373
[14] M. Muzychuk, F. Pakovich, “Solution of the polynomial moment problem”, Proc. London Math. Soc., 99:3 (2009), 633–657, arXiv: 0710.4085v1 | DOI | MR | Zbl
[15] F. Pakovich, “A counterexample to the “composition conjecture””, Proc. Amer. Math. Soc., 130:12 (2002), 3747–3749 | DOI | MR | Zbl
[16] F. Pakovich, “On polynomials orthogonal to all powers of a Chebyshev polynomial on a segment”, Israel J. Math., 142 (2004), 273–283 | DOI | MR | Zbl
[17] S. Yakovenko, “A geometric proof of the Bautin theorem. Concerning the Hilbert 16th problem”, Amer. Math. Soc. Transl. Ser. 2, 165, Amer. Math. Soc., Providence, RI, 1995, 203–219 | MR | Zbl