Indefinite Sturm Theory
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 4, pp. 91-96
Cet article a éte moissonné depuis la source Math-Net.Ru
The symplectic versions of the Sturm oscillation and comparison theorem describe some properties of the Maslov index and were proved by developing a suitable intersection theory in the Lagrangian Grassmannian setting. What we propose here is a Sturm oscillation and comparison theorem for indefinite systems, obtained by defining a new index by means of the Brouwer degree of a determinant map associated with a suspension of a complexified family of boundary value problems.
Keywords:
Hermitian form, spectral flow, Brouwer degree.
@article{FAA_2009_43_4_a7,
author = {A. Portaluri},
title = {Indefinite {Sturm} {Theory}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {91--96},
year = {2009},
volume = {43},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a7/}
}
A. Portaluri. Indefinite Sturm Theory. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 4, pp. 91-96. http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a7/
[1] V. I. Arnold, Funkts. analiz i ego prilozhen., 19:4 (1985), 1–10 | MR | Zbl
[2] H. Edwards, Ann. of Math., 80 (1964), 2–57 | DOI | MR | Zbl
[3] T. Kato, Perturbation Theory for Linear Operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer-Verlag, New York–Berlin, 1980 | MR | Zbl
[4] M. Musso, J. Pejsachowicz, A. Portaluri, Topological Methods in Nonlinear Analysis, 25:1 (2005), 69–99 | DOI | MR | Zbl
[5] M. Musso, J. Pejsachowicz, A. Portaluri, Esaim Control Optim. Calc. Var., 13:3 (2007), 598–621 | DOI | MR | Zbl
[6] V. Yu. Ovsienko, Matem. zametki, 47:3 (1990), 65–73 | MR | Zbl
[7] J. Robbin, D. Salamon, Bull. London Math. Soc., 27 (1995), 1–33 | DOI | MR | Zbl