Indefinite Sturm Theory
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 4, pp. 91-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The symplectic versions of the Sturm oscillation and comparison theorem describe some properties of the Maslov index and were proved by developing a suitable intersection theory in the Lagrangian Grassmannian setting. What we propose here is a Sturm oscillation and comparison theorem for indefinite systems, obtained by defining a new index by means of the Brouwer degree of a determinant map associated with a suspension of a complexified family of boundary value problems.
Keywords: Hermitian form, spectral flow, Brouwer degree.
@article{FAA_2009_43_4_a7,
     author = {A. Portaluri},
     title = {Indefinite {Sturm} {Theory}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {91--96},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a7/}
}
TY  - JOUR
AU  - A. Portaluri
TI  - Indefinite Sturm Theory
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 91
EP  - 96
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a7/
LA  - ru
ID  - FAA_2009_43_4_a7
ER  - 
%0 Journal Article
%A A. Portaluri
%T Indefinite Sturm Theory
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 91-96
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a7/
%G ru
%F FAA_2009_43_4_a7
A. Portaluri. Indefinite Sturm Theory. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 4, pp. 91-96. http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a7/

[1] V. I. Arnold, Funkts. analiz i ego prilozhen., 19:4 (1985), 1–10 | MR | Zbl

[2] H. Edwards, Ann. of Math., 80 (1964), 2–57 | DOI | MR | Zbl

[3] T. Kato, Perturbation Theory for Linear Operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer-Verlag, New York–Berlin, 1980 | MR | Zbl

[4] M. Musso, J. Pejsachowicz, A. Portaluri, Topological Methods in Nonlinear Analysis, 25:1 (2005), 69–99 | DOI | MR | Zbl

[5] M. Musso, J. Pejsachowicz, A. Portaluri, Esaim Control Optim. Calc. Var., 13:3 (2007), 598–621 | DOI | MR | Zbl

[6] V. Yu. Ovsienko, Matem. zametki, 47:3 (1990), 65–73 | MR | Zbl

[7] J. Robbin, D. Salamon, Bull. London Math. Soc., 27 (1995), 1–33 | DOI | MR | Zbl