Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2009_43_4_a7, author = {A. Portaluri}, title = {Indefinite {Sturm} {Theory}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {91--96}, publisher = {mathdoc}, volume = {43}, number = {4}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a7/} }
A. Portaluri. Indefinite Sturm Theory. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 4, pp. 91-96. http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a7/
[1] V. I. Arnold, Funkts. analiz i ego prilozhen., 19:4 (1985), 1–10 | MR | Zbl
[2] H. Edwards, Ann. of Math., 80 (1964), 2–57 | DOI | MR | Zbl
[3] T. Kato, Perturbation Theory for Linear Operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer-Verlag, New York–Berlin, 1980 | MR | Zbl
[4] M. Musso, J. Pejsachowicz, A. Portaluri, Topological Methods in Nonlinear Analysis, 25:1 (2005), 69–99 | DOI | MR | Zbl
[5] M. Musso, J. Pejsachowicz, A. Portaluri, Esaim Control Optim. Calc. Var., 13:3 (2007), 598–621 | DOI | MR | Zbl
[6] V. Yu. Ovsienko, Matem. zametki, 47:3 (1990), 65–73 | MR | Zbl
[7] J. Robbin, D. Salamon, Bull. London Math. Soc., 27 (1995), 1–33 | DOI | MR | Zbl