Three Series of Invariant Manifolds of the Sawada--Kotera Equation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 4, pp. 87-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find a new infinite sequence of invariant manifolds for the Sawada–Kotera equation, in addition to the known two sequences of its symmetries and conservation laws. The elements of these three sequences are related cyclically by recursion relations similar to the Lenard formula for the KdV equation. For any $n>0$, there are two invariant manifolds of order $2n$, which allows one to construct two $n$-soliton solutions of the Sawada–Kotera equation.
Mots-clés : evolution equation, soliton solution.
Keywords: invariant manifold, symmetry, conservation law
@article{FAA_2009_43_4_a6,
     author = {Yu. Yu. Bagderina},
     title = {Three {Series} of {Invariant} {Manifolds} of the {Sawada--Kotera} {Equation}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {87--90},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a6/}
}
TY  - JOUR
AU  - Yu. Yu. Bagderina
TI  - Three Series of Invariant Manifolds of the Sawada--Kotera Equation
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 87
EP  - 90
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a6/
LA  - ru
ID  - FAA_2009_43_4_a6
ER  - 
%0 Journal Article
%A Yu. Yu. Bagderina
%T Three Series of Invariant Manifolds of the Sawada--Kotera Equation
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 87-90
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a6/
%G ru
%F FAA_2009_43_4_a6
Yu. Yu. Bagderina. Three Series of Invariant Manifolds of the Sawada--Kotera Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 4, pp. 87-90. http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a6/

[1] K. Sawada, T. Kotera, Prog. Theor. Phys., 51:5 (1974), 1355–1367 | DOI | MR | Zbl

[2] P. J. Caudrey, R. K. Dodd, J. D. Gibbon, Proc. R. Soc. Lond. A, 351:1666 (1976), 407–422 | DOI | MR | Zbl

[3] V. E. Zakharov, L. D. Faddeev, Funkts. analiz i ego pril., 5:4 (1971), 18–27 | MR | Zbl

[4] C. S. Gardner, J. Math. Phys., 12:8 (1971), 1548–1551 | DOI | MR | Zbl

[5] J. Satsuma, D. J. Kaup, J. Phys. Soc. Japan, 43 (1977), 692–697 | DOI | MR

[6] V. V. Sokolov, A. B. Shabat, Funkts. analiz i ego pril., 14:2 (1980), 79–80 | MR | Zbl

[7] A. P. Fordy, J. Gibbons, J. Math. Phys., 21:10 (1980), 2508–2510 | DOI | MR | Zbl

[8] F. Magri, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[9] I. M. Gelfand, I. Ya. Dorfman, Funkts. analiz i ego pril., 13:4 (1979), 13–30 | MR

[10] B. Fuchssteiner, W. Oevel, J. Math. Phys., 23:3 (1982), 358–363 | DOI | MR | Zbl

[11] P. Lax, SIAM Review, 18:3 (1976), 351–375 | DOI | MR | Zbl

[12] V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachev, A. A. Rodionov, Primenenie teoretiko-gruppovykh metodov v gidrodinamike, Nauka, Novosibirsk, 1994 | MR | Zbl

[13] O. V. Kaptsov, Dinamika sploshnoi sredy (IG SO AN SSSR), 46 (1980), 46–57 | Zbl