Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2009_43_4_a4, author = {L. A. Petrov}, title = {Two-Parameter {Family} of {Infinite-Dimensional} {Diffusions} on the {Kingman} {Simplex}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {45--66}, publisher = {mathdoc}, volume = {43}, number = {4}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a4/} }
L. A. Petrov. Two-Parameter Family of Infinite-Dimensional Diffusions on the Kingman Simplex. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 4, pp. 45-66. http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a4/
[1] J. Bertoin, “A second order SDE for the Langevin process reflected at a completely inelastic boundary”, J. Eur. Math. Soc. (JEMS), 10:3 (2008), 625–639 | DOI | MR | Zbl
[2] A. Borodin, G. Olshanski, “Infinite-dimensional diffusions as limits of random walks on partitions”, Probab. Theory Related Fields, 144:1–2 (2009), 281–318 ; http://arxiv.org/abs/0706.1034v1 | DOI | MR | Zbl
[3] R. Dong, A. Gnedin, J. Pitman, “Exchangeable partitions derived from Markovian coalescents”, Ann. Appl. Probab., 17:4 (2007), 1172–1201 ; http://arxiv.org/abs/math/0603745 | DOI | MR | Zbl
[4] S. N. Ethier, T. G. Kurtz, “The infinitely-many-neutral-alleles diffusion model”, Adv. Appl. Probab., 13:3 (1981), 429–452 | DOI | MR | Zbl
[5] S. N. Ethier, T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley-Interscience, New York, 1986 | MR | Zbl
[6] S. N. Ethier, “Eigenstructure of the infinitely-many-neutral-alleles diffusion model”, J. Appl. Probab., 29:3 (1992), 487–498 | DOI | MR | Zbl
[7] W. J. Ewens, Mathematical Population Genetics, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl
[8] J. Fulman, “Stein's method and Plancherel measure of the symmetric group”, Trans. Amer. Math. Soc., 357:2 (2005), 555–570 | DOI | MR | Zbl
[9] J. Fulman, “Commutation relations and Markov chains”, Probab. Theory Related Fields, 144:1–2 (2009), 99–136 ; http://arxiv.org/abs/0712.1375 | DOI | MR | Zbl
[10] S. Feng, F.-Y. Wang, “A class of infinite dimensional diffusion processes with connection to population genetics”, Journal Appl. Probab., 44:4 (2007), 938–949 ; . http://arxiv.org/abs/0711.1887v1 | DOI | MR | Zbl
[11] A. Gnedin, J. Pitman, “Regenerative partition structures”, Electronic J. Combin., 11:2 (2005), research paper 12 | DOI | MR | Zbl
[12] R. C. Griffiths, “A transition density expansion for a multi-allele diffusion model”, Adv. Appl. Probab., 11:2 (1979), 310–325. | DOI | MR | Zbl
[13] Ts. Ignatov, “Ob odnoi konstante, voznikayuschei v asimptoticheskoi teorii simmetricheskikh grupp, i o merakh Puassona–Dirikhle”, Teoriya veroyatn. i ee prim., 27:1 (1982), 129–140 | MR | Zbl
[14] S. Karlin, J. McGregor, “The number of mutant forms maintained in a population”, Proc. 5th Berkeley Symposium on Math Statist. Prob., 4, 1967, 415–438
[15] S. V. Kerov, Asymptotic representation theory of the symmetric group and its applications in analysis, Amer. Math. Soc., Providence, RI, 2003 ; http://www.mathsoc.spb.ru/preprint/2001/01-04.ps.gz | MR | Zbl
[16] S. Kerov, A. Okounkov, G. Olshanski, “The boundary of Young graph with Jack edge multiplicities”, Intern. Math. Res. Notices, 1998:4 (1998), 173–199 | DOI | MR | Zbl
[17] J. F. C. Kingman, “Random discrete distributions”, J. R. Statist. Soc. B, 37 (1975), 1–22 | MR | Zbl
[18] J. F. C. Kingman, “The population structure associated with the Ewens sampling formula”, Theoret. Population Biology, 11:2 (1977), 274–283 | DOI | MR | Zbl
[19] J. F. C. Kingman, “Random partitions in population genetics”, Proc. Roy. Soc. London, Ser. A, 361:1704 (1978), 1–20 | DOI | MR | Zbl
[20] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR
[21] M. Perman, J. Pitman, M. Yor, “Size-biased sampling of Poisson point processes and excursions”, Probab. Theory Related Fields, 92:1 (1992), 21–39 | DOI | MR | Zbl
[22] J. Pitman, The two-parameter generalization of Ewens' random partition structure, Technical report 345, Dept. Statistics, U. C. Berkeley, 1992; http://www.stat.berkeley.edu/tech-reports/
[23] J. Pitman, “Exchangeable and partially exchangeable random partitions”, Probab. Theory Related Fields, 102:2 (1995), 145–158 | DOI | MR | Zbl
[24] J. Pitman, “Random discrete distributions invariant under size-biased permutation”, Adv. Appl. Probab., 28:2 (1996), 525–539 | DOI | MR | Zbl
[25] J. Pitman, Combinatorial Stochastic Processes (Ecole d'Eté de Probabilités de Saint-Flour XXXII-2002), Lecture Notes in Math., 1875, Springer-Verlag, Berlin, 2006 ; http://works.bepress.com/jim_pitman/1 | MR | Zbl
[26] J. Pitman, M. Yor, “The two-parameter Poisson–Dirichlet distribution derived from a stable subordinator”, Ann. Probab., 25 (1997), 855–900 | DOI | MR | Zbl
[27] B. Schmuland, “A result on the infinitely many neutral alleles diffusion model”, J. Appl. Probab., 28:2 (1991), 253–267 | DOI | MR | Zbl
[28] A. M. Vershik, A. A. Shmidt, “Predelnye mery, voznikayuschie v asimptoticheskoi teorii simmetricheskikh grupp, I i II”, Teoriya veroyatn. i ee prim., 22:1 (1977), 72–88 ; 23:1 (1978), 42–54 | MR | Zbl | MR | Zbl
[29] G. A. Watterson, “Reversibility and the age of an allele. I. Moran's infinitely many neutral alleles model”, Theoret. Population Biology, 10:3 (1976), 239–253 | DOI | MR | Zbl
[30] G. A. Watterson, “The stationary distribution of the infinitely-many-neutral-alleles diffusion model”, J. Appl. Probab., 13:4 (1976), 639–651 | DOI | MR | Zbl