Two-Parameter Family of Infinite-Dimensional Diffusions on the Kingman Simplex
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 4, pp. 45-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a two-parameter family of diffusion processes $\mathbf{X}_{\alpha,\theta}$ on the Kingman simplex, which consists of all nonincreasing infinite sequences of nonnegative numbers with sum less than or equal to one. The processes on this simplex arise as limits of finite Markov chains on partitions of positive integers. For $\alpha=0$, our process coincides with the infinitely-many-neutral-alleles diffusion model constructed by Ethier and Kurtz (1981) in population genetics. The general two-parameter case apparently lacks population-genetic interpretation. In the present paper, we extend Ethier and Kurtz's main results to the two-parameter case. Namely, we show that the (two-parameter) Poisson–Dirichlet distribution $\mathrm{PD}(\alpha,\theta)$ is the unique stationary distribution for the process $\mathbf{X}_{\alpha,\theta}$ and that the process is ergodic and reversible with respect to $\mathrm{PD}(\alpha,\theta)$. We also compute the spectrum of the generator of $\mathbf{X}_{\alpha,\theta}$. The Wright–Fisher diffusions on finite-dimensional simplices turn out to be special cases of $\mathbf{X}_{\alpha,\theta}$ for certain degenerate parameter values.
Keywords: two-parameter Poisson–Dirichlet measure, Kingman graph
Mots-clés : diffusion process, Ewens–Pitman partition structure.
@article{FAA_2009_43_4_a4,
     author = {L. A. Petrov},
     title = {Two-Parameter {Family} of {Infinite-Dimensional} {Diffusions} on the {Kingman} {Simplex}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {45--66},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a4/}
}
TY  - JOUR
AU  - L. A. Petrov
TI  - Two-Parameter Family of Infinite-Dimensional Diffusions on the Kingman Simplex
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 45
EP  - 66
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a4/
LA  - ru
ID  - FAA_2009_43_4_a4
ER  - 
%0 Journal Article
%A L. A. Petrov
%T Two-Parameter Family of Infinite-Dimensional Diffusions on the Kingman Simplex
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 45-66
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a4/
%G ru
%F FAA_2009_43_4_a4
L. A. Petrov. Two-Parameter Family of Infinite-Dimensional Diffusions on the Kingman Simplex. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 4, pp. 45-66. http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a4/

[1] J. Bertoin, “A second order SDE for the Langevin process reflected at a completely inelastic boundary”, J. Eur. Math. Soc. (JEMS), 10:3 (2008), 625–639 | DOI | MR | Zbl

[2] A. Borodin, G. Olshanski, “Infinite-dimensional diffusions as limits of random walks on partitions”, Probab. Theory Related Fields, 144:1–2 (2009), 281–318 ; http://arxiv.org/abs/0706.1034v1 | DOI | MR | Zbl

[3] R. Dong, A. Gnedin, J. Pitman, “Exchangeable partitions derived from Markovian coalescents”, Ann. Appl. Probab., 17:4 (2007), 1172–1201 ; http://arxiv.org/abs/math/0603745 | DOI | MR | Zbl

[4] S. N. Ethier, T. G. Kurtz, “The infinitely-many-neutral-alleles diffusion model”, Adv. Appl. Probab., 13:3 (1981), 429–452 | DOI | MR | Zbl

[5] S. N. Ethier, T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley-Interscience, New York, 1986 | MR | Zbl

[6] S. N. Ethier, “Eigenstructure of the infinitely-many-neutral-alleles diffusion model”, J. Appl. Probab., 29:3 (1992), 487–498 | DOI | MR | Zbl

[7] W. J. Ewens, Mathematical Population Genetics, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl

[8] J. Fulman, “Stein's method and Plancherel measure of the symmetric group”, Trans. Amer. Math. Soc., 357:2 (2005), 555–570 | DOI | MR | Zbl

[9] J. Fulman, “Commutation relations and Markov chains”, Probab. Theory Related Fields, 144:1–2 (2009), 99–136 ; http://arxiv.org/abs/0712.1375 | DOI | MR | Zbl

[10] S. Feng, F.-Y. Wang, “A class of infinite dimensional diffusion processes with connection to population genetics”, Journal Appl. Probab., 44:4 (2007), 938–949 ; . http://arxiv.org/abs/0711.1887v1 | DOI | MR | Zbl

[11] A. Gnedin, J. Pitman, “Regenerative partition structures”, Electronic J. Combin., 11:2 (2005), research paper 12 | DOI | MR | Zbl

[12] R. C. Griffiths, “A transition density expansion for a multi-allele diffusion model”, Adv. Appl. Probab., 11:2 (1979), 310–325. | DOI | MR | Zbl

[13] Ts. Ignatov, “Ob odnoi konstante, voznikayuschei v asimptoticheskoi teorii simmetricheskikh grupp, i o merakh Puassona–Dirikhle”, Teoriya veroyatn. i ee prim., 27:1 (1982), 129–140 | MR | Zbl

[14] S. Karlin, J. McGregor, “The number of mutant forms maintained in a population”, Proc. 5th Berkeley Symposium on Math Statist. Prob., 4, 1967, 415–438

[15] S. V. Kerov, Asymptotic representation theory of the symmetric group and its applications in analysis, Amer. Math. Soc., Providence, RI, 2003 ; http://www.mathsoc.spb.ru/preprint/2001/01-04.ps.gz | MR | Zbl

[16] S. Kerov, A. Okounkov, G. Olshanski, “The boundary of Young graph with Jack edge multiplicities”, Intern. Math. Res. Notices, 1998:4 (1998), 173–199 | DOI | MR | Zbl

[17] J. F. C. Kingman, “Random discrete distributions”, J. R. Statist. Soc. B, 37 (1975), 1–22 | MR | Zbl

[18] J. F. C. Kingman, “The population structure associated with the Ewens sampling formula”, Theoret. Population Biology, 11:2 (1977), 274–283 | DOI | MR | Zbl

[19] J. F. C. Kingman, “Random partitions in population genetics”, Proc. Roy. Soc. London, Ser. A, 361:1704 (1978), 1–20 | DOI | MR | Zbl

[20] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR

[21] M. Perman, J. Pitman, M. Yor, “Size-biased sampling of Poisson point processes and excursions”, Probab. Theory Related Fields, 92:1 (1992), 21–39 | DOI | MR | Zbl

[22] J. Pitman, The two-parameter generalization of Ewens' random partition structure, Technical report 345, Dept. Statistics, U. C. Berkeley, 1992; http://www.stat.berkeley.edu/tech-reports/

[23] J. Pitman, “Exchangeable and partially exchangeable random partitions”, Probab. Theory Related Fields, 102:2 (1995), 145–158 | DOI | MR | Zbl

[24] J. Pitman, “Random discrete distributions invariant under size-biased permutation”, Adv. Appl. Probab., 28:2 (1996), 525–539 | DOI | MR | Zbl

[25] J. Pitman, Combinatorial Stochastic Processes (Ecole d'Eté de Probabilités de Saint-Flour XXXII-2002), Lecture Notes in Math., 1875, Springer-Verlag, Berlin, 2006 ; http://works.bepress.com/jim_pitman/1 | MR | Zbl

[26] J. Pitman, M. Yor, “The two-parameter Poisson–Dirichlet distribution derived from a stable subordinator”, Ann. Probab., 25 (1997), 855–900 | DOI | MR | Zbl

[27] B. Schmuland, “A result on the infinitely many neutral alleles diffusion model”, J. Appl. Probab., 28:2 (1991), 253–267 | DOI | MR | Zbl

[28] A. M. Vershik, A. A. Shmidt, “Predelnye mery, voznikayuschie v asimptoticheskoi teorii simmetricheskikh grupp, I i II”, Teoriya veroyatn. i ee prim., 22:1 (1977), 72–88 ; 23:1 (1978), 42–54 | MR | Zbl | MR | Zbl

[29] G. A. Watterson, “Reversibility and the age of an allele. I. Moran's infinitely many neutral alleles model”, Theoret. Population Biology, 10:3 (1976), 239–253 | DOI | MR | Zbl

[30] G. A. Watterson, “The stationary distribution of the infinitely-many-neutral-alleles diffusion model”, J. Appl. Probab., 13:4 (1976), 639–651 | DOI | MR | Zbl