Algebra of Formal Vector Fields on the Line and Buchstaber's Conjecture
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 4, pp. 26-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Lie algebra $L_1$ of formal vector fields on the line which vanish at the origin together with their first derivatives. V. M. Buchstaber and A. V. Shokurov showed that the universal enveloping algebra $U(L_1)$ is isomorphic to the Landweber–Novikov algebra $S$ tensored \with the reals. The cohomology $H^*(L_1)=H^*(U(L_1))$ was originally calculated by L. V. Goncharova. It follows from her computations that the multiplication in the cohomology $H^*(L_1)$ is trivial. Buchstaber conjectured that the cohomology $H^*(L_1)$ is generated with respect to nontrivial Massey products by one-dimensional cocycles. B. L. Feigin, D. B. Fuchs, and V. S. Retakh found a representation for additive generators of $H^*(L_1)$ in the desired form, but the Massey products indicated by them later proved to contain the zero element. In the present paper, we prove that $H^*(L_1)$ is recurrently generated with respect to nontrivial Massey products by two one-dimensional cocycles in $H^1(L_1)$.
Keywords: Massey product, graded Lie algebra, formal connection, representation, cohomology.
Mots-clés : Maurer–Cartan equation
@article{FAA_2009_43_4_a3,
     author = {D. V. Millionshchikov},
     title = {Algebra of {Formal} {Vector} {Fields} on the {Line} and {Buchstaber's} {Conjecture}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {26--44},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a3/}
}
TY  - JOUR
AU  - D. V. Millionshchikov
TI  - Algebra of Formal Vector Fields on the Line and Buchstaber's Conjecture
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 26
EP  - 44
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a3/
LA  - ru
ID  - FAA_2009_43_4_a3
ER  - 
%0 Journal Article
%A D. V. Millionshchikov
%T Algebra of Formal Vector Fields on the Line and Buchstaber's Conjecture
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 26-44
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a3/
%G ru
%F FAA_2009_43_4_a3
D. V. Millionshchikov. Algebra of Formal Vector Fields on the Line and Buchstaber's Conjecture. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 4, pp. 26-44. http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a3/

[1] I. V. Artelnykh, “Proizvedeniya Massi i spektralnaya posledovatelnost Bukhshtabera”, UMN, 55:3 (2000), 165–166 | DOI | MR | Zbl

[2] I. K. Babenko, I. A. Taimanov, “Proizvedeniya Massi v simplekticheskikh mnogoobraziyakh”, Matem. sb., 191:8 (2000), 3–44 | DOI | MR | Zbl

[3] M. Bauer, Ph. Di Francesco, C. Itzykson, J.-B. Zuber, “Covariant differential equations and singular vectors in Virasoro representations”, Nuclear Phys. B, 362:3 (1991), 515–562 | DOI | MR | Zbl

[4] Y. Benoist, “Une nilvariété non affine”, J. Differential Geom., 41:1 (1995), 21–52 | DOI | MR | Zbl

[5] L. Benoit, Y. Saint-Aubin, “Degenerate conformal field theories and explicit expressions for some null vectors”, Phys. Lett. B, 215:3 (1988), 517–522 | DOI | MR | Zbl

[6] V. M. Bukhshtaber, “Kharakter Chzhenya–Dolda v kobordizmakh. I”, Matem. sb., 83(125):4(12) (1970), 575–595 | MR | Zbl

[7] V. M. Bukhshtaber, A. V. Shokurov, “Algebra Landvebera–Novikova i formalnye vektornye polya na pryamoi”, Funkts. analiz i ego pril., 12:3 (1978), 1–11 | DOI | MR | Zbl

[8] I. M. Gelfand, “The cohomology of infinite dimensional Lie algebras: some questions of integral geometry”, Actes du Congres International des Mathématiciens (Nice, 1970), t. 1, Gauthier-Villars, Paris, 1971, 95–111 | MR

[9] L. V. Goncharova, “Kogomologii algebr Li formalnykh vektornykh polei na pryamoi”, Funkts. analiz i ego pril., 7:2 (1973), 6–14 | MR | Zbl

[10] B. L. Feigin, D. B. Fuks, “Kososimmetricheskie invariantnye differentsialnye operatory na pryamoi i moduli Verma nad algebroi Virasoro”, Funkts. analiz i ego pril., 16:2 (1982), 47–63 | MR | Zbl

[11] B. L. Feigin, D. B. Fuchs, “Verma modules over Virasoro algebra”, Lecture Notes in Math., 1060, Springer-Verlag, Berlin, 1984, 230–245 | DOI | MR | Zbl

[12] B. L. Feigin, D. B. Fuchs, “Representations of the Virasoro algebra”, Representations of Lie Groups and Related Topics, Adv. Stud. Contemp. Math., 7, Gordon Breach, New York, 1990, 465–554 | MR | Zbl

[13] B. L. Feigin, D. B. Fuchs, V. S. Retakh, “Massey operations in the cohomology of the infinite dimensional Lie algebra $L_1$”, Lecture Notes in Math., 1346, Springer-Verlag, Berlin, 1988, 13–31 | DOI | MR | Zbl

[14] D. B. Fuks, Kogomologii beskonechnomernykh algebr Li, Nauka, M., 1984 | MR | Zbl

[15] D. B. Fuchs, “Singular vectors over the Virasoro algebra and extended Verma modules”, Adv. Soviet Math., 17, Amer. Math. Soc., Providence, RI, 1993, 65–74 | MR | Zbl

[16] V. G. Kac, “Contravariant form for infinite-dimensional Lie algebras”, Lecture Notes in Phys. B, 94, 1979, 441–445 | DOI | MR | Zbl

[17] D. Kraines, “Massey higher products”, Trans. Amer. Math. Soc., 124 (1966), 431–449 | DOI | MR | Zbl

[18] W. S. Massey, “Some higher order cohomology operations”, Simposium International de Topologia Algebraica, La Universidad National Autónoma de Mexico and UNESCO, Mexico City, 1958, 145–154 | MR | Zbl

[19] A. Rocha-Carridi, N. R. Wallach, “Characters of irreducuble representations of the Lie algebra of vector fields on the circle”, Invent. Math., 72:1 (1983), 57–75 | DOI | MR