Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2009_43_3_a1, author = {M. S. Agranovich}, title = {Potential {Type} {Operators} and {Transmission} {Problems} for {Strongly} {Elliptic} {Second-Order} {Systems} in {Lipschitz} {Domains}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--25}, publisher = {mathdoc}, volume = {43}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a1/} }
TY - JOUR AU - M. S. Agranovich TI - Potential Type Operators and Transmission Problems for Strongly Elliptic Second-Order Systems in Lipschitz Domains JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2009 SP - 3 EP - 25 VL - 43 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a1/ LA - ru ID - FAA_2009_43_3_a1 ER -
%0 Journal Article %A M. S. Agranovich %T Potential Type Operators and Transmission Problems for Strongly Elliptic Second-Order Systems in Lipschitz Domains %J Funkcionalʹnyj analiz i ego priloženiâ %D 2009 %P 3-25 %V 43 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a1/ %G ru %F FAA_2009_43_3_a1
M. S. Agranovich. Potential Type Operators and Transmission Problems for Strongly Elliptic Second-Order Systems in Lipschitz Domains. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 3, pp. 3-25. http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a1/
[1] M. S. Agranovich, “Ellipticheskie operatory na zamknutykh mnogoobraziyakh”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 63, VINITI, M., 1990, 5–129 | MR
[2] M. C. Agranovich, “Spektralnye svoistva operatorov tipa potentsiala dlya nekotorogo klassa silno ellipticheskikh sistem na gladkikh i lipshitsevykh poverkhnostyakh”, Trudy MMO, 62, 2001, 5–55
[3] M. C. Agranovich, “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, UMN, 57:5 (2002), 3–78 | DOI | MR
[4] M. S. Agranovich, “Strongly elliptic second order systems with spectral parameter in transmission conditions on a nonclosed surface”, Operator Theory: Advances and Applications, 164, Birkhäuser, Basel, 2006, 1–21 | DOI | MR | Zbl
[5] M. C. Agranovich, “Regulyarnost variatsionnykh reshenii lineinykh granichnykh zadach v lipshitsevykh oblastyakh”, Funkts. analiz i ego pril., 40:4 (2006), 83–103 | DOI | MR | Zbl
[6] M. C. Agranovich, “K teorii zadach Dirikhle i Neimana dlya lineinykh silno ellipticheskikh sistem v lipshitsevykh oblastyakh”, Funkts. analiz i ego pril., 41:4 (2007), 1–21 | DOI | MR | Zbl
[7] M. S. Agranovich, “Spektralnye zadachi v lipshitsevykh oblastyakh dlya silno ellipticheskikh sistem v banakhovykh prostranstvakh $H_p^\sigma$ i $B_p^\sigma$”, Funkts. analiz i ego pril., 42:4 (2008), 2–23 | DOI | MR | Zbl
[8] M. S. Agranovich, “Remarks on potential spaces and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary”, Russian J. Math. Phys., 15:2 (2008), 146–155 | DOI | MR
[9] M. S. Agranovich, B. A. Amosov, M. Levitin, “Spectral problems for the Lamé system with spectral parameter in boundary conditions on smooth or nonsmooth boundary”, Russian J. Math. Phys., 6:3 (1999), 247–281 | MR | Zbl
[10] M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, N. N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCH, Berlin etc., 1999 (Pererabotannoe angliiskoe izdanie knigi [VKS].) | MR | Zbl
[11] M. S. Agranovich, R. Menniken, “Spektralnye zadachi dlya uravneniya Gelmgoltsa so spektralnym parametrom v granichnykh usloviyakh na negladkoi poverkhnosti”, Matem. sb., 190:1 (1999), 29–68 | DOI | MR | Zbl
[12] A. P. Calderón, “Cauchy integrals on Lipschitz curves and related operators”, Proc. Nat. Acad. Sci. USA, 74 (1977), 1324–1327 | DOI | MR | Zbl
[13] R. R. Coifman, A. McIntosh, Y. Meyer, “L'intégrale de Cauchy definit un opérateur borné sur $L^2$ pour les courbes lipschitziennes”, Ann. of Math., 116:2 (1982), 361–388 | DOI | MR
[14] M. Costabel, “Boundary integral operators in Lipschitz domains: elementary results”, SIAM J. Math. Anal., 19:3 (1988), 613–626 | DOI | MR | Zbl
[15] M. Costabel, M. Dauge, “On representation formulas and radiation conditions”, Math. Methods Appl. Sci., 20:2 (1997), 133–150 | 3.0.CO;2-Y class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[16] M. Costabel, W. L. Wendland, “Strong ellipticity of boundary integral operators”, J. Reine Angew. Math., 372 (1986), 34–63 | MR | Zbl
[17] B. E. J. Dahlberg, C. E. Kenig, G. C. Verchota, “Boundary value problems for the systems of elastostatics in Lipschitz domains”, Duke Math. J., 57:3 (1988), 795–818 | DOI | MR | Zbl
[18] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959
[19] D. Jerison, C. E. Kenig, “The inhomogeneous Dirichlet problem in Lipschitz domains”, J. Funct. Anal., 130:1 (1995), 164–219 | DOI | MR
[20] A. Jonsson, H. Wallin, Function Spaces on Subsets of $\mathbb{R}^n$, Math. Rep., 2, no. 1, Academic Publ., Harwood, 1984 | MR
[21] P. D. Lax, A. N. Milgram, “Parabolic equations”, Contributions to the Theory of Partial Differential Equations, Annals of Math. Studies, 33, 1954, 167–190 | MR | Zbl
[22] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[23] V. Mazżya, M. Mitrea, T. Shaposhnikova, The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients, http://arxiv.org/abs/math/0701898 | MR
[24] V. Mazya, M. Mitrea, T. Shaposhnikova, “Neodnorodnaya zadacha Dirikhle dlya sistemy Stoksa v lipshitsevykh oblastyakh s edinichnoi normalyu, blizkoi k VMO”, Funkts. analiz i ego pril., 43:3 (2009), 65–88 | DOI | MR
[25] D. Mitrea, M. Mitrea, M. Taylor, Layer potentials, the Hodge Laplacian, and global boundary value problems in nonsmooth Riemannian in Riemannian manifolds, Mem. Amer. Math. Soc., 150, no 713, 2001 | MR
[26] M. Mitrea, M. Taylor, “Boundary layer methods for Lipschitz domains in Riemannian manifolds”, J. Funct. Anal., 163:2 (1999), 181–251 | DOI | MR | Zbl
[27] M. Mitrea, M. Taylor, “Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev–Besov space results and the Poisson problem”, J. Funct. Anal., 176:1 (2000), 1–79 | DOI | MR | Zbl
[28] J. Nec̆as, Les methodes directes en théorie des équations elliptiques, Masson, Paris, 1967 | MR | Zbl
[29] L. Nirenberg, “Remarks on strongly elliptic partial differential equations”, Comm. Pure Appl. Math., 8 (1965), 649–675 | MR
[30] O. A. Oleinik, A. S. Shamaev, G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North Holland, Amsterdam, 1992 | MR
[31] M. Ruzhansky, V. Turunen, “On the Fourier analysis of operators on the torus”, Modern Trends in Pseudo-Differential Operators, Oper. Theory Adv. Appl., 172, Birkhäuser, Basel, 2007, 87–105 | MR | Zbl
[32] V. S. Rychkov, “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc. (2), 60:1 (1999), 237–257 | DOI | MR | Zbl
[33] G. Savaré, “Regularity results for elliptic equations in Lipschitz domains”, J. Funct. Anal., 152:1 (1998), 176–201 | DOI | MR | Zbl
[34] I. Ya. Shneiberg, “Spektralnye svoistva lineinykh operatorov v interpolyatsionnykh semeistvakh banakhovykh prostranstv”, Matem. issled., 9:2 (1974), 214–227 | MR
[35] H. Triebel, “Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers”, Rev. Mat. Complut., 15:2 (2002), 475–524 | DOI | MR | Zbl
[36] M. I. Vishik, “O silno ellipticheskikh sistemakh differentsialnykh uravnenii”, Matem. sb., 29(71):3 (1951), 615–676 | Zbl
[37] N. N. Voitovich, B. Z. Katsenelenbaum, A. N. Sivov, Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, s dobavleniem M. S. Agranovicha «Spektralnye svoistva zadach difraktsii», str. 289–416, Nauka, M., 1977 | MR