Potential Type Operators and Transmission Problems for Strongly Elliptic Second-Order Systems in Lipschitz Domains
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 3, pp. 3-25

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a strongly elliptic second-order system in a bounded $n$-dimensional domain $\Omega^+$ with Lipschitz boundary $\Gamma$, $n\ge2$. The smoothness assumptions on the coefficients are minimized. For convenience, we assume that the domain is contained in the standard torus $\mathbb{T}^n$. In previous papers, we obtained results on the unique solvability of the Dirichlet and Neumann problems in the spaces $H^\sigma_p$ and $B^\sigma_p$ without use of surface potentials. In the present paper, using the approach proposed by Costabel and McLean, we define surface potentials and discuss their properties assuming that the Dirichlet and Neumann problems in $\Omega^+$ and the complementing domain $\Omega^-$ are uniquely solvable. In particular, we prove the invertibility of the integral single layer operator and the hypersingular operator in Besov spaces on $\Gamma$. We describe some of their spectral properties as well as those of the corresponding transmission problems.
Keywords: strongly elliptic system, Lipschitz domain, Dirichlet problem, Neumann problem, Bessel potential space, surface potential
Mots-clés : Besov space, transmission problem.
@article{FAA_2009_43_3_a1,
     author = {M. S. Agranovich},
     title = {Potential {Type} {Operators} and {Transmission} {Problems} for {Strongly} {Elliptic} {Second-Order} {Systems} in {Lipschitz} {Domains}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--25},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a1/}
}
TY  - JOUR
AU  - M. S. Agranovich
TI  - Potential Type Operators and Transmission Problems for Strongly Elliptic Second-Order Systems in Lipschitz Domains
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 3
EP  - 25
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a1/
LA  - ru
ID  - FAA_2009_43_3_a1
ER  - 
%0 Journal Article
%A M. S. Agranovich
%T Potential Type Operators and Transmission Problems for Strongly Elliptic Second-Order Systems in Lipschitz Domains
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 3-25
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a1/
%G ru
%F FAA_2009_43_3_a1
M. S. Agranovich. Potential Type Operators and Transmission Problems for Strongly Elliptic Second-Order Systems in Lipschitz Domains. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 3, pp. 3-25. http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a1/