Potential Type Operators and Transmission Problems for Strongly Elliptic Second-Order Systems in Lipschitz Domains
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 3, pp. 3-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a strongly elliptic second-order system in a bounded $n$-dimensional domain $\Omega^+$ with Lipschitz boundary $\Gamma$, $n\ge2$. The smoothness assumptions on the coefficients are minimized. For convenience, we assume that the domain is contained in the standard torus $\mathbb{T}^n$. In previous papers, we obtained results on the unique solvability of the Dirichlet and Neumann problems in the spaces $H^\sigma_p$ and $B^\sigma_p$ without use of surface potentials. In the present paper, using the approach proposed by Costabel and McLean, we define surface potentials and discuss their properties assuming that the Dirichlet and Neumann problems in $\Omega^+$ and the complementing domain $\Omega^-$ are uniquely solvable. In particular, we prove the invertibility of the integral single layer operator and the hypersingular operator in Besov spaces on $\Gamma$. We describe some of their spectral properties as well as those of the corresponding transmission problems.
Keywords: strongly elliptic system, Lipschitz domain, Dirichlet problem, Neumann problem, Bessel potential space, surface potential
Mots-clés : Besov space, transmission problem.
@article{FAA_2009_43_3_a1,
     author = {M. S. Agranovich},
     title = {Potential {Type} {Operators} and {Transmission} {Problems} for {Strongly} {Elliptic} {Second-Order} {Systems} in {Lipschitz} {Domains}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--25},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a1/}
}
TY  - JOUR
AU  - M. S. Agranovich
TI  - Potential Type Operators and Transmission Problems for Strongly Elliptic Second-Order Systems in Lipschitz Domains
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 3
EP  - 25
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a1/
LA  - ru
ID  - FAA_2009_43_3_a1
ER  - 
%0 Journal Article
%A M. S. Agranovich
%T Potential Type Operators and Transmission Problems for Strongly Elliptic Second-Order Systems in Lipschitz Domains
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 3-25
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a1/
%G ru
%F FAA_2009_43_3_a1
M. S. Agranovich. Potential Type Operators and Transmission Problems for Strongly Elliptic Second-Order Systems in Lipschitz Domains. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 3, pp. 3-25. http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a1/

[1] M. S. Agranovich, “Ellipticheskie operatory na zamknutykh mnogoobraziyakh”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 63, VINITI, M., 1990, 5–129 | MR

[2] M. C. Agranovich, “Spektralnye svoistva operatorov tipa potentsiala dlya nekotorogo klassa silno ellipticheskikh sistem na gladkikh i lipshitsevykh poverkhnostyakh”, Trudy MMO, 62, 2001, 5–55

[3] M. C. Agranovich, “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, UMN, 57:5 (2002), 3–78 | DOI | MR

[4] M. S. Agranovich, “Strongly elliptic second order systems with spectral parameter in transmission conditions on a nonclosed surface”, Operator Theory: Advances and Applications, 164, Birkhäuser, Basel, 2006, 1–21 | DOI | MR | Zbl

[5] M. C. Agranovich, “Regulyarnost variatsionnykh reshenii lineinykh granichnykh zadach v lipshitsevykh oblastyakh”, Funkts. analiz i ego pril., 40:4 (2006), 83–103 | DOI | MR | Zbl

[6] M. C. Agranovich, “K teorii zadach Dirikhle i Neimana dlya lineinykh silno ellipticheskikh sistem v lipshitsevykh oblastyakh”, Funkts. analiz i ego pril., 41:4 (2007), 1–21 | DOI | MR | Zbl

[7] M. S. Agranovich, “Spektralnye zadachi v lipshitsevykh oblastyakh dlya silno ellipticheskikh sistem v banakhovykh prostranstvakh $H_p^\sigma$ i $B_p^\sigma$”, Funkts. analiz i ego pril., 42:4 (2008), 2–23 | DOI | MR | Zbl

[8] M. S. Agranovich, “Remarks on potential spaces and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary”, Russian J. Math. Phys., 15:2 (2008), 146–155 | DOI | MR

[9] M. S. Agranovich, B. A. Amosov, M. Levitin, “Spectral problems for the Lamé system with spectral parameter in boundary conditions on smooth or nonsmooth boundary”, Russian J. Math. Phys., 6:3 (1999), 247–281 | MR | Zbl

[10] M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, N. N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCH, Berlin etc., 1999 (Pererabotannoe angliiskoe izdanie knigi [VKS].) | MR | Zbl

[11] M. S. Agranovich, R. Menniken, “Spektralnye zadachi dlya uravneniya Gelmgoltsa so spektralnym parametrom v granichnykh usloviyakh na negladkoi poverkhnosti”, Matem. sb., 190:1 (1999), 29–68 | DOI | MR | Zbl

[12] A. P. Calderón, “Cauchy integrals on Lipschitz curves and related operators”, Proc. Nat. Acad. Sci. USA, 74 (1977), 1324–1327 | DOI | MR | Zbl

[13] R. R. Coifman, A. McIntosh, Y. Meyer, “L'intégrale de Cauchy definit un opérateur borné sur $L^2$ pour les courbes lipschitziennes”, Ann. of Math., 116:2 (1982), 361–388 | DOI | MR

[14] M. Costabel, “Boundary integral operators in Lipschitz domains: elementary results”, SIAM J. Math. Anal., 19:3 (1988), 613–626 | DOI | MR | Zbl

[15] M. Costabel, M. Dauge, “On representation formulas and radiation conditions”, Math. Methods Appl. Sci., 20:2 (1997), 133–150 | 3.0.CO;2-Y class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[16] M. Costabel, W. L. Wendland, “Strong ellipticity of boundary integral operators”, J. Reine Angew. Math., 372 (1986), 34–63 | MR | Zbl

[17] B. E. J. Dahlberg, C. E. Kenig, G. C. Verchota, “Boundary value problems for the systems of elastostatics in Lipschitz domains”, Duke Math. J., 57:3 (1988), 795–818 | DOI | MR | Zbl

[18] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959

[19] D. Jerison, C. E. Kenig, “The inhomogeneous Dirichlet problem in Lipschitz domains”, J. Funct. Anal., 130:1 (1995), 164–219 | DOI | MR

[20] A. Jonsson, H. Wallin, Function Spaces on Subsets of $\mathbb{R}^n$, Math. Rep., 2, no. 1, Academic Publ., Harwood, 1984 | MR

[21] P. D. Lax, A. N. Milgram, “Parabolic equations”, Contributions to the Theory of Partial Differential Equations, Annals of Math. Studies, 33, 1954, 167–190 | MR | Zbl

[22] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[23] V. Mazżya, M. Mitrea, T. Shaposhnikova, The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients, http://arxiv.org/abs/math/0701898 | MR

[24] V. Mazya, M. Mitrea, T. Shaposhnikova, “Neodnorodnaya zadacha Dirikhle dlya sistemy Stoksa v lipshitsevykh oblastyakh s edinichnoi normalyu, blizkoi k VMO”, Funkts. analiz i ego pril., 43:3 (2009), 65–88 | DOI | MR

[25] D. Mitrea, M. Mitrea, M. Taylor, Layer potentials, the Hodge Laplacian, and global boundary value problems in nonsmooth Riemannian in Riemannian manifolds, Mem. Amer. Math. Soc., 150, no 713, 2001 | MR

[26] M. Mitrea, M. Taylor, “Boundary layer methods for Lipschitz domains in Riemannian manifolds”, J. Funct. Anal., 163:2 (1999), 181–251 | DOI | MR | Zbl

[27] M. Mitrea, M. Taylor, “Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev–Besov space results and the Poisson problem”, J. Funct. Anal., 176:1 (2000), 1–79 | DOI | MR | Zbl

[28] J. Nec̆as, Les methodes directes en théorie des équations elliptiques, Masson, Paris, 1967 | MR | Zbl

[29] L. Nirenberg, “Remarks on strongly elliptic partial differential equations”, Comm. Pure Appl. Math., 8 (1965), 649–675 | MR

[30] O. A. Oleinik, A. S. Shamaev, G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North Holland, Amsterdam, 1992 | MR

[31] M. Ruzhansky, V. Turunen, “On the Fourier analysis of operators on the torus”, Modern Trends in Pseudo-Differential Operators, Oper. Theory Adv. Appl., 172, Birkhäuser, Basel, 2007, 87–105 | MR | Zbl

[32] V. S. Rychkov, “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc. (2), 60:1 (1999), 237–257 | DOI | MR | Zbl

[33] G. Savaré, “Regularity results for elliptic equations in Lipschitz domains”, J. Funct. Anal., 152:1 (1998), 176–201 | DOI | MR | Zbl

[34] I. Ya. Shneiberg, “Spektralnye svoistva lineinykh operatorov v interpolyatsionnykh semeistvakh banakhovykh prostranstv”, Matem. issled., 9:2 (1974), 214–227 | MR

[35] H. Triebel, “Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers”, Rev. Mat. Complut., 15:2 (2002), 475–524 | DOI | MR | Zbl

[36] M. I. Vishik, “O silno ellipticheskikh sistemakh differentsialnykh uravnenii”, Matem. sb., 29(71):3 (1951), 615–676 | Zbl

[37] N. N. Voitovich, B. Z. Katsenelenbaum, A. N. Sivov, Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, s dobavleniem M. S. Agranovicha «Spektralnye svoistva zadach difraktsii», str. 289–416, Nauka, M., 1977 | MR